Least squares regression:
a maximum likelihood perspective

Least squares linear regression

Maximum likelihood and least squares

We will derive the sum squares error from the
perspective of maximum likelihood

First, we will assume
y=h(x,w)+e

Where ¢ is a zero mean Gaussian random variable.
So:
P(ylx, w) = N(h(x,w),0?)

We assume the examples are i.i.d. so the I}'{(felihood is:

P(yi, .. ynIx1, ..., XN) = HP(yz'\Xi)
1=1

Maximum likelihood and least squares
We'll focus on the log-likelihood:
N
log P(y1,- ., ynIx1, ., xn) = > log P(yilx;)
=1

Recall that:

N(lpyo?) = —

s (ot )

The log likelihood is now:

N 1 &
2
— 5 log(2m) = Nlogo — - ;Zl(yi — h(x,w))
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Maximum likelihood and least squares

Maximizing the log-likelihood

N 1 &
2
-5 log(27) — Nlogo — 252 ;Zl(yi — h(x,w))

is therefore equivalent to minimizing
N

D (g — hi(x,w))

=1

which is the sum-squares criterion we used for deriving
least squares regression!

It is also possible o derive a probabilistic interpretation
of the quadratic regularizer




