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A User’s Guide to Support Vector Machines

Asa Ben-Hur and Jason Weston

Abstract

The Support Vector Machine (SVM) is a widely used classifier in bioinformatics. Obtaining the best results
with SVMs requires an understanding of their workings and the various ways a user can influence their
accuracy. We provide the user with a basic understanding of the theory behind SVMs and focus on their use
in practice. We describe the effect of the SVM parameters on the resulting classifier, how to select good
values for those parameters, data normalization, factors that affect training time, and software for training
SVMs.
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1. Introduction

The Support Vector Machine (SVM) is a state-of-the-art classifica-
tion method introduced in 1992 by Boser, Guyon, and Vapnik
(1). The SVM classifier is widely used in bioinformatics due to its
high accuracy, ability to deal with high-dimensional data such as
gene expression, and flexibility in modeling diverse sources of data
(2). See also a recent paper in Nature Biotechnology titled ‘‘What
is a support vector machine?’’ (3).

SVMs belong to the general category of kernel methods (4, 5).
A kernel method is an algorithm that depends on the data only
through dot-products. When this is the case, the dot product can
be replaced by a kernel function which computes a dot product in
some possibly high-dimensional feature space. This has two advan-
tages: First, the ability to generate nonlinear decision boundaries
using methods designed for linear classifiers. Second, the use of
kernel functions allows the user to apply a classifier to data that
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have no obvious fixed-dimensional vector space representation.
The prime example of such data in bioinformatics are sequence,
either DNA or protein, and protein structure.

Using SVMs effectively requires an understanding of how they
work. When training an SVM, the practitioner needs to make a
number of decisions: how to preprocess the data, what kernel to
use, and finally, setting the parameters of the SVM and the kernel.
Uninformed choices may result in severely reduced performance
(6). In this chapter, we aim to provide the user with an intuitive
understanding of these choices and provide general usage guide-
lines. All the examples shown in this chapter were generated using
the PyML machine learning environment, which focuses on kernel
methods and SVMs, and is available at http://pyml.sourcefor
ge.net. PyML is just one of several software packages that provide
SVM training methods; an incomplete listing of these is provided
in Section 9. More information is found on the Machine Learning
Open Source Software Web site http://mloss.org and a related
paper (7).

This chapter is organized as follows: we begin by defining the
notion of a linear classifier (Section 2); we then introduce kernels as
a way of generating nonlinear boundaries while still using the
machinery of a linear classifier (Section3); the concept of the margin
and SVMs for maximum margin classification are introduced next
(Section 4). We then discuss the use of SVMs in practice: the effect
of the SVM and kernel parameters (Section 5), how to select SVM
parameters and normalization (Sections 6 and 8), and how to use
SVMs for unbalanced data (Section 7). We close with a discussion
of SVM training and software (Section 9) and a list of topics for
further reading (Section 10). For a more complete discussion of
SVMs and kernel methods, we refer the reader to recent books on
the subject (5, 8).

2. Preliminaries:
Linear Classifiers

Support vector machines are an example of a linear two-class
classifier. This section explains what that means. The data for a
two-class learning problem consist of objects labeled with one of
two labels corresponding to the two classes; for convenience we
assume the labels are +1 (positive examples) or �1 (negative
examples). In what follows, boldface x denotes a vector with
components xi. The notation xi will denote the ith vector in a
dataset composed of n labeled examples (xi,yi) where yi is the
label associated with xi. The objects xi are called patterns or
inputs. We assume the inputs belong to some set X. Initially we
assume the inputs are vectors, but once we introduce kernels this
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assumption will be relaxed, at which point they could be any
continuous/discrete object (e.g., a protein/DNA sequence or
protein structure).

A key concept required for defining a linear classifier is the dot
product between two vectors, also referred to as an inner product or
scalar product, defined as wT x ¼

P
i wixi: A linear classifier is

based on a linear discriminant function of the form

f xð Þ ¼ wT x þ b: ½1�

The vector w is known as the weight vector, and b is called the
bias. Consider the case b = 0 first. The set of points x such that
wT x ¼ 0 are all points that are perpendicular to w and go through
the origin – a line in two dimensions, a plane in three dimensions,
and more generally, a hyperplane. The bias b translates the hyper-
plane away from the origin. The hyperplane divides the space into
two according to the sign of the discriminant function f(x) defined
in Equation [1] – see Fig. 13.1 for an illustration. The boundary
between regions classified as positive and negative is called the
decision boundary of the classifier. The decision boundary defined
by a hyperplane is said to be linear because it is linear in the input
examples (cf. Equation [1]). A classifier with a linear decision
boundary is called a linear classifier. Conversely, when the decision
boundary of a classifier depends on the data in a nonlinear way
(see Fig. 13.4 for example), the classifier is said to be nonlinear.

w

wTx + b < 0

wTx + b > 0
– 

– 

– – 

Fig. 13.1. A linear classifier. The hyper-plane (line in 2-d) is the classifier’s decision
boundary. A point is classified according to which side of the hyper-plane it falls on,
which is determined by the sign of the discriminant function.
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3. Kernels: from
Linear to Nonlinear
Classifiers

In many applications a nonlinear classifier provides better accuracy.
And yet, linear classifiers have advantages, one of them being that
they often have simple training algorithms that scale well with the
number of examples (9, 10). This begs the question: can the
machinery of linear classifiers be extended to generate nonlinear
decision boundaries? Furthermore, can we handle domains such as
protein sequences or structures where a representation in a fixed-
dimensional vector space is not available?

The naive way of making a nonlinear classifier out of a linear
classifier is to map our data from the input space X to a feature space F
usinganonlinear function�. InthespaceF, thediscriminantfunctionis

f xð Þ ¼ wT� xð Þ þ b ½2�
Example 1 Consider the case of a two-dimensional input-space

with the mapping � xð Þ ¼ x2
1 ;

ffiffiffi
2
p

x1x2; x2
2

� �T
, which represents a

vector in terms of all degree-2 monomials. In this case

wT� xð Þ ¼ w1x2
1 þ w2

ffiffiffi
2
p

x1x2 þ w3x2
2 ;

resulting in a decision boundary for the classifier which is a conic
section (e.g., an ellipse or hyperbola). The added flexibility of
considering degree-2 monomials is illustrated in Fig. 13.4 in the
context of SVMs.

The approach of explicitly computing nonlinear features does not
scalewell with thenumberof input features: when applying a mapping
analogous to the one from the above example to inputs which are
vectors in a d-dimensional space, the dimensionality of the feature
space F is quadratic in d. This results in a quadratic increase in memory
usage for storing the features and a quadratic increase in the time
required to compute the discriminant function of the classifier. This
quadratic complexity is feasible for low-dimensional data; but when
handling gene expression data that can have thousands of dimensions,
quadratic complexity in the number of dimensions is not acceptable.
The situation is even worse when monomials of a higher degree are
used. Kernel methods solve this issue by avoiding the step of explicitly
mapping the data to a high-dimensional feature space. Suppose the
weight vector can be expressed as a linear combination of the training
examples, i.e., w ¼

Pn
i¼1 �ixi. Then

f xð Þ ¼
Xn

i¼1

�ix
T
i xþ b

In the feature space, F, this expression takes the form

f xð Þ ¼
Xn

i¼1

�i� xið ÞT� xð Þ þ b
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The representation in terms of the variables �i is known as the
dual representation of the decision boundary. As indicated above,
the feature space F may be high dimensional, making this trick
impractical unless the kernel function k(x,x0) defined as

k x; x0ð Þ ¼ � xð ÞT� x0ð Þ
can be computed efficiently. In terms of the kernel function, the
discriminant function is

f xð Þ ¼
Xn

i¼1

k x; xið Þ þ b: ½3�

Example 2 Let us go back to the example of the mapping

� xð Þ ¼ x2
1 ;

ffiffiffi
2
p

x1x2; x
2
2

� �T
. An easy calculation shows that the

kernel associated with this mapping is given by

k x; x0ð Þ ¼ � xð ÞT� x0ð Þ ¼ xT x0
� �2

, which shows that the kernel can

be computed without explicitly computing the mapping �.
The above example leads us to the definition of the degree-d

polynomial kernel

k x; x0ð Þ ¼ xT x0 þ 1
� �d

: ½4�

The feature space for this kernel consists of all monomials
whose degree is less or equal to d. The kernel with d = 1 is the
linear kernel, and in that case the additive constant in Equation [4]
is usually omitted. The increasing flexibility of the classifier as the
degree of the polynomial is increased is illustrated in Fig. 13.4.
The other widely used kernel is the Gaussian kernel defined by

k x; x0ð Þ ¼ exp �� x� x0k k2
� �

; ½5�

where g> 0 is a parameter that controls the width of Gaussian, and
||x|| is the norm of x and is given by

ffiffiffiffiffiffiffiffi
xTx
p

. The parameter g plays a
similar role as the degree of the polynomial kernel in controlling
the flexibility of the resulting classifier (see Fig. 13.5).

We saw that a linear decision boundary can be ‘‘kernelized,’’
i.e. its dependence on the data is only through dot products. In
order for this to be useful, the training algorithm needs to be
kernelizable as well. It turns out that a large number of machine
learning algorithms can be expressed using kernels – including
ridge regression, the perceptron algorithm, and SVMs (5, 8).

4. Large-Margin
Classification

In what follows, we use the term linearly separable to denote data
for which there exists a linear decision boundary that separates
positive from negative examples (see Fig. 13.2). Initially, we will
assume linearly separable data and later show how to handle data
that are not linearly separable.
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4.1. The Geometric

Margin

In this section, we define the notion of a margin. For a given
hyperplane, we denote by xþ(x�) the closest point to the
hyperplane among the positive (negative) examples. From
simple geometric considerations, the margin of a hyperplane
defined by a weight vector w with respect to a dataset D can
be seen to be

mD wð Þ ¼ 1

2
ŵT xþ � x�ð Þ; ½6�

where ŵ is a unit vector in the direction of w, and we assume that
xþ and x� are equidistant from the decision boundary, i.e.,

f x þð Þ ¼ wT xþ þ b ¼ a

f x þð Þ ¼ wT xþ þ b ¼ �a ½7�

for some constant a40. Note that multiplying the data points by a
fixed number will increase the margin by the same amount,
whereas in reality, the margin has not really changed – we just

margin

Fig. 13.2. A linear SVM. The circled data points are the support vectors – the examples that are closest to the decision
boundary. They determine the margin with which the two classes are separated.
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changed the ‘‘units’’ with which it is measured. To make the
geometric margin meaningful, we fix the value of the discriminant
function at the points closest to the hyperplane, and set a = 1 in
Equation [7]. Adding the two equations and dividing by ||w||, we
obtain the following expression for the margin:

mD wð Þ ¼ 1

2
ŵT xþ � x�ð Þ ¼ 1

wk k : ½8�

4.2. Support Vector

Machines

Now that we have the concept of a margin, we can formulate the
maximum margin classifier. We will first define the hard-margin
SVM, applicable to a linearly separable dataset, and then modify it
to handle nonseparable data.

The maximum-margin classifier is the discriminant function
that maximizes the geometric margin 1/||w||, which is equivalent
to minimizing ||w||2. This leads to the following constrained
optimization problem:

minimize
w;b

1

2
wk k2

subject to: yi wTxi þ b
� �

� 1 i ¼ 1; ::: ;n: ½9�

The constraints in this formulation ensure that the maximum-
margin classifier classifies each example correctly, which is possible
since we assumed that the data are linearly separable. In practice,
data are often not linearly separable; and even if they are, a greater
margin can be achieved by allowing the classifier to misclassify
some points. To allow errors we replace the inequality constraints
in Equation [9] with

yi wT xi þ b
� �

� 1� �i;

where �i are slack variables that allow an example to be in the
margin (1 � �i � 0, also called a margin error) or misclassified
(�i � 1). Since an example is misclassified if the value of its
slack variable is greater than 1, the sum of the slack variables
is a bound on the number of misclassified examples. Our
objective of maximizing the margin, i.e., minimizing ||w||2

will be augmented with a term C
P

i �i to penalize misclassi-
fication and margin errors. The optimization problem now
becomes

minimize
w;b

1

2
wk k2 þ C

X

i

�i

subject to: yi wTxi þ b
� �

� 1� �i �i � 0: ½10�

The constant C40 sets the relative importance of maximizing
the margin and minimizing the amount of slack. This formulation
is called the soft-margin SVM and was introduced by Cortes and
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Vapnik (11). Using the method of Lagrange multipliers, we can
obtain the dual formulation, which is expressed in terms of vari-
ables �i (11, 5, 8):

maximize
�

Xn

i¼1
�i �

1

2

Xn

i¼1

Xn

j¼1
yiyj�i�jx

T
i xj

subject to
Xn

i¼1
yi�i ¼ 0; 0 � �i � C :

½11�

The dual formulation leads to an expansion of the weight
vector in terms of the input examples

w ¼
Xn

i¼1
yi�ixi: ½12�

The examples for which �i40 are those points that are on the
margin, or within the margin when a soft-margin SVM is used.
These are the so-called support vectors. The expansion in terms of
the support vectors is often sparse, and the level of sparsity (frac-
tion of the data serving as support vectors) is an upper bound on
the error rate of the classifier (5).

The dual formulation of the SVM optimization problem
depends on the data only through dot products. The dot product
can therefore be replaced with a nonlinear kernel function, thereby
performing large-margin separation in the feature space of the
kernel (see Figs. 13.4 and 13.5). The SVM optimization problem
was traditionally solved in the dual formulation, and only recently
it was shown that the primal formulation, Equation [10], can lead
to efficient kernel-based learning (12). Details on software for
training SVMs is provided in Section 9.

5. Understanding
the Effects of SVM
and Kernel
Parameters Training an SVM finds the large-margin hyperplane, i.e., sets the

values of the parameters �i and b (c.f. Equation [3]). The SVM
has another set of parameters called hyperparameters: the soft-mar-
gin constant, C, and any parameters the kernel function may depend
on (width of a Gaussian kernel or degree of a polynomial kernel). In
this section, we illustrate the effect of the hyperparameters on the
decision boundary of an SVM using two-dimensional examples.

We begin our discussion of hyperparameters with the soft-
margin constant, whose role is illustrated in Fig. 13.3. For a
large value of C, a large penalty is assigned to errors/margin errors.
This is seen in the left panel of Fig. 13.3, where the two points
closest to the hyperplane affect its orientation, resulting in a hyper-
plane that comes close to several other data points. When C is
decreased (right panel of the figure), those points become margin
errors; the hyperplane’s orientation is changed, providing a much
larger margin for the rest of the data.
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Kernel parameters also have a significant effect on the decision
boundary. The degree of the polynomial kernel and the width
parameter of the Gaussian kernel control the flexibility of the result-
ing classifier (Figs. 13.4 and 13.5). The lowest degree polynomial
is the linear kernel, which is not sufficient when a nonlinear relation-
ship between features exists. For the data in Fig. 13.4 a degree-2
polynomial is already flexible enough to discriminate between the
two classes with a sizable margin. The degree-5 polynomial yields a
similar decision boundary, albeit with greater curvature.

Next we turn our attention to the Gaussian kernel defined as

k x; x0ð Þ ¼ exp �� x� x0k k2
� �

. This expression is essentially zero if

the distance between x and x0 is much larger than 1=
ffiffiffi
�
p

; i.e., for a

fixed x0 it is localized to a region around x0. The support vector
expansion, Equation [3] is thus a sum of Gaussian ‘‘bumps’’ cen-
tered around each support vector. When g is small (top left panel in
Fig. 13.5) a given data point x has a nonzero kernel value relative

- -––––
–

–

Fig. 13.4. The effect of the degree of a polynomial kernel. Higher degree polynomial
kernels allow a more flexible decision boundary. The style follows that of Fig. 13.3.

– 

– – 
– – – 

Fig. 13.3. The effect of the soft-margin constant, C, on the decision boundary. A smaller
value of C (right) allows to ignore points close to the boundary and increases the margin.
The decision boundary between negative examples (circles) and positive examples
(crosses) is shown as a thick line. The lighter lines are on the margin (discriminant
value equal to –1 or +1). The grayscale level represents the value of the discriminant
function, dark for low values and a light shade for high values.

A User’s Guide to SVMs 231



to any example in the set of support vectors. Therefore, the whole
set of support vectors affects the value of the discriminant function
at x, resulting in a smooth decision boundary. As g is increased, the
locality of the support vector expansion increases, leading to
greater curvature of the decision boundary. When g is large, the
value of the discriminant function is essentially constant outside
the close proximity of the region where the data are concentrated
(see bottom right panel in Fig. 13.5). In this regime of the g
parameter, the classifier is clearly overfitting the data.

As seen from the examples in Figs. 13.4 and 13.5, the para-
meter g of the Gaussian kernel and the degree of polynomial kernel
determine the flexibility of the resulting SVM in fitting the data. If
this complexity parameter is too large, overfitting will occur (bot-
tom panels in Fig. 13.5).

A question frequently posed by practitioners is ‘‘which kernel
should I use for my data?’’ There are several answers to this ques-
tion. The first is that it is, like most practical questions in machine
learning, data dependent, so several kernels should be tried. That
being said, we typically follow the following procedure: try a linear
kernel first, and then see if you can improve on its performance
using a nonlinear kernel. The linear kernel provides a useful baseline,
and in many bioinformatics applications provides the best results:

– 

– 

– 
– – – – 

Fig. 13.5. The effect of the inverse-width parameter of the Gaussian kernel (g) for a fixed
value of the soft-margin constant. For small values of g (upper left) the decision boundary
is nearly linear. As g increases the flexibility of the decision boundary increases. Large
values of g lead to overfitting (bottom). The figure style follows that of Fig. 13.3.
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the flexibility of the Gaussian and polynomial kernels often leads to
overfitting in high-dimensional datasets with a small number of
examples, microarray datasets being a good example. Furthermore,
an SVM with a linear kernel is easier to tune since the only parameter
that affects performance is the soft-margin constant. Once a result
using a linear kernel is available, it can serve as a baseline that you can
try to improve upon using a nonlinear kernel. Between the Gaussian
and polynomial kernels, our experience shows that the Gaussian
kernel usually outperforms the polynomial kernel in both accuracy
and convergence time if the data are normalized correctly and a
good value of the width parameter is chosen. These issues are
discussed in the next sections.

6. Model Selection

The dependence of the SVM decision boundary on the SVM
hyperparameters translates into a dependence of classifier accuracy
on the hyperparameters. When working with a linear classifier,
the only hyperparameter that needs to be tuned is the SVM soft-
margin constant. For the polynomial and Gaussian kernels, the
search space is two-dimensional. The standard method of explor-
ing this two-dimensional space is via grid-search; the grid points
are generally chosen on a logarithmic scale and classifier accuracy
is estimated for each point on the grid. This is illustrated in
Fig. 13.6. A classifier is then trained using the hyperparameters
that yield the best accuracy on the grid.

Fig. 13.6. SVM accuracy on a grid of parameter values.
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The accuracy landscape in Fig. 13.6 has an interesting prop-
erty: there is a range of parameter values that yield optimal classifier
performance; furthermore, these equivalent points in parameter
space fall along a ‘‘ridge’’ in parameter space. This phenomenon
can be understood as follows. Consider a particular value of (g,C).
If we decrease the value of g, this decreases the curvature of the
decision boundary; if we then increase the value of C the decision
boundary is forced to curve to accommodate the larger penalty for
errors/margin errors. This is illustrated in Fig. 13.7 for two-
dimensional data.

7. SVMs for
Unbalanced Data

Many datasets encountered in bioinformatics and other areas of
application are unbalanced, i.e., one class contains a lot more exam-
ples than the other. Unbalanced datasets can present a challenge
when training a classifier and SVMs are no exception – see (13) for a
general overview of the issue. A good strategy for producing a high-
accuracy classifier on imbalanced data is to classify any example as
belonging to the majority class; this is called the majority-class
classifier. While highly accurate under the standard measure of
accuracy such a classifier is not very useful. When presented with
an unbalanced dataset that is not linearly separable, an SVM that
follows the formulation Equation [10] will often produce a classifier
that behaves similarly to the majority-class classifier. An illustration
of this phenomenon is provided in Fig. 13.8.

The crux of the problem is that the standard notion of accuracy
(the success rate or fraction of correctly classified examples) is not a
good way to measure the success of a classifier applied to unba-
lanced data, as is evident by the fact that the majority-class classifier
performs well under it. The problem with the success rate is that it
assigns equal importance to errors made on examples belonging to
the majority class and the minority class. To correct for the

– 

– 
– – – – – – 

Fig. 13.7. Similar decision boundaries can be obtained using different combinations of SVM hyperparameters. The values
of C and g are indicated on each panel and the figure style follows Fig. 13.3.
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imbalance in the data, we need to assign different costs for mis-
classification to each class. Before introducing the balanced success
rate, we note that the success rate can be expressed as

P successjþð ÞP þð Þ þ P successj�ð ÞP �ð Þ;

where P (success|þ) (P (success|�)) is an estimate of the prob-
ability of success in classifying positive (negative) examples, and
P(þ) (P (�)) is the fraction of positive (negative) examples. The
balanced success rate modifies this expression to

BSR ¼ P successjþð Þ þ P successj�ð Þð Þ=2;

which averages the success rates in each class. The majority-class
classifier will have a balanced-success-rate of 0.5. A balanced error-
rate is defined as 1�BSR. The BSR, as opposed to the standard
success rate, gives equal overall weight to each class in measuring
performance. A similar effect is obtained in training SVMs by
assigning different misclassification costs (SVM soft-margin
constants) to each class. The total misclassification cost, C

P
i �i

is replaced with two terms, one for each class:

C
Xn

i¼1

�i ! Cþ
X

i2Iþ

�iþC�
X

i2I�

�i

where Cþ(C�) is the soft-margin constant for the positive (nega-
tive) examples and Iþ(I�) are the sets of positive (negative) exam-
ples. To give equal overall weight to each class, we want the total
penalty for each class to be equal. Assuming that the number of
misclassified examples from each class is proportional to the num-
ber of examples in each class, we choose Cþ and C� such that

Cþnþ ¼ C�n�;

Fig. 13.8. When data are unbalanced and a single soft-margin is used, the resulting classifier (left) will tend to classify any
example to the majority class. The solution (right panel ) is to assign a different soft-margin constant to each class (see
text for details). The figure style follows that of Fig. 13.3.
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where nþ(n�) is the number of positive (negative) examples. Or in
other words

Cþ=C� ¼ nþ=n�:

This provides a method for setting the ratio between the soft-
margin constants of the two classes, leaving one parameter that
needs to be adjusted. This method for handling unbalanced data is
implemented in several SVM software packages, e.g., LIBSVM
(14) and PyML.

8. Normalization

Linear classifiers are known to be sensitive to the way features are
scaled (see e.g. (14) in the context of SVMs). Therefore, it is
essential to normalize either the data or the kernel itself. This
observation carries over to kernel-based classifiers that use non-
linear kernel functions: the accuracy of an SVM can severely
degrade if the data are not normalized (14). Some sources of
data, e.g., microarray or mass-spectrometry data require normal-
ization methods that are technology-specific. In what follows, we
only consider normalization methods that are applicable regardless
of the method that generated the data.

Normalization can be performed at the level of the input
features or at the level of the kernel (normalization in feature
space). In many applications, the available features are continuous
values, where each feature is measured in a different scale and has a
different range of possible values. In such cases, it is often bene-
ficial to scale all features to a common range, e.g., by standardizing
the data (for each feature, subtracting its mean and dividing by its
standard deviation). Standardization is not appropriate when the
data are sparse since it destroys sparsity since each feature will
typically have a different normalization constant. Another way to
handle features with different ranges is to bin each feature and
replace it with indicator variables that indicate which bin it falls in.

An alternative to normalizing each feature separately is to
normalize each example to be a unit vector. If the data are explicitly
represented as vectors, you can normalize the data by dividing each
vector by its norm such that ||x||¼1 after normalization. Normal-
ization can also be performed at the level of the kernel, i.e.,
normalizing in feature space, leading to ||�(x)||¼1 (or equiva-
lently k(x,x)¼1). This is accomplished using the cosine kernel,
which normalizes a kernel k(x,x0) to

kcosine x; x0ð Þ ¼ k x; x0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k x; xð Þk x0; x0ð Þ

p : ½13�
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Note that for the linear kernel, cosine normalization is
equivalent to division by the norm. The use of the cosine
kernel is redundant for the Gaussian kernel since it already
satisfies k(x,x)¼1. This does not mean that normalization of
the input features to unit vectors is redundant: our experience
shows that the Gaussian kernel often benefits from it. Normal-
izing data to unit vectors reduces the dimensionality of the
data by one since the data are projected to the unit sphere.
Therefore, this may not be a good idea for low-dimensional
data.

9. SVM Training
Algorithms
and Software

The popularity of SVMs has led to the development of a large
number of special purpose solvers for the SVM optimization
problem (15). One of the most common SVM solvers is
LIBSVM (14). The complexity of training of nonlinear SVMs
with solvers such as LIBSVM has been estimated to be quadratic
in the number of training examples (15), which can be prohibi-
tive for datasets with hundreds of thousands of examples.
Researchers have therefore explored ways to achieve faster train-
ing times. For linear SVMs, very efficient solvers are available
which converge in a time which is linear in the number of
examples (16, 17, 15). Approximate solvers that can be trained
in linear time without a significant loss of accuracy were also
developed (18).

There are two types of software that provide SVM training
algorithms. The first type is specialized software whose main
objective is to provide an SVM solver. LIBSVM (14) and
SVMlight (19) are two popular examples of this class of software.
The other class of software is machine learning libraries that
provide a variety of classification methods and other facilities
such as methods for feature selection, preprocessing, etc. The
user has a large number of choices, and the following is an
incomplete list of environments that provide an SVM classifier:
Orange (20), The Spider (http://www.kyb.tuebingen.mpg.de/
bs/people/spider/), Elefant (21), Plearn (http://plearn.ber
lios.de/), Weka (22), Lush (23), Shogun (24), RapidMiner (25),
and PyML (http://pyml.sourcefor ge.net). The SVM implementa-
tion in several of these are wrappers for the LIBSVM library.
A repository of machine learning open source software is avail-
able at http://mloss.org as part of a movement advocating
distribution of machine learning algorithms as open source
software (7).
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10. Further Reading

This chapter focused on the practical issues in using support vector
machines to classify data that are already provided as features in
some fixed-dimensional vector-space. In bioinformatics, we often
encounter data that have no obvious explicit embedding in a fixed-
dimensional vector space, e.g., protein or DNA sequences, protein
structures, protein interaction networks, etc. Researchers have
developed a variety of ways in which to model such data with
kernel methods. See (2, 8) for more details. The design of a good
kernel, i.e., defining a set of features that make the classification
task easy, is where most of the gains in classification accuracy can be
obtained.

After having defined a set of features, it is instructive to
perform feature selection: remove features that do not contri-
bute to the accuracy of the classifier (26, 27). In our experi-
ence, feature selection does not usually improve the accuracy
of SVMs. Its importance is mainly in obtaining better under-
standing of the data – SVMs, like many other classifiers, are
‘‘black boxes’’ that do not provide the user much information
on why a particular prediction was made. Reducing the set of
features to a small salient set can help in this regard. Several
successful feature selection methods have been developed spe-
cifically for SVMs and kernel methods. The Recursive Feature
Elimination (RFE) method, for example, iteratively removes
features that correspond to components of the SVM weight
vector that are smallest in absolute value; such features have
less of a contribution to the classification and are therefore
removed (28).

SVMs are two-class classifiers. Solving multiclass problems can
be done with multiclass extensions of SVMs (29). These are com-
putationally expensive, so the practical alternative is to convert a
two-class classifier to a multiclass. The standard method for doing
so is the so-called one-vs-the-rest approach, where for each class a
classifier is trained for that class against the rest of the classes; an
input is classified according to which classifier produces the largest
discriminant function value. Despite its simplicity, it remains the
method of choice (30).
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