Lecture 4
Sequence alignment: how to discover similarities between biological sequences

Chapter 6 in Jones and Pevzner

Spring 2018
January 30, 2018
Evolution as a tool for biological insight

- “Nothing in biology makes sense except in the light of evolution” - Theodosius Dobzhansky.

- The functionality of many genes is virtually the same among many organisms: Can understand biology in simpler organisms than ourselves (“model organisms”).
Homology

- Genes in organisms A and B that have evolved from the same ancestral gene are said to be *homologs*.

- Homology between genes typically indicates conserved function.

- Sequence similarity is used to infer homology.
Sequence Comparison: Early Success Story

- In 1983 Russell Doolittle and colleagues found similarities between a cancer-causing gene from the Simian Sarcoma virus and a normal growth factor gene (PDGF).

- Finding sequence similarities with genes of known function is a common approach to infer a newly sequenced gene’s function.
The drosophila “eyeless” gene

- W. Gehring discovered that turning on the “eyeless” gene in drosophila leads to the growth of ectopic eyes.
- “eyeless” is a master control gene for eye formation (transcription factor).
A similar gene in humans

- The aniridia gene in humans has a sequence that is similar to the drosophila eyeless gene.

- Eye morphogenesis is under similar genetic control in vertebrates and insects.
PAX6_HUMAN aligned against PAX6_DRO

<table>
<thead>
<tr>
<th></th>
<th>HSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPCDISRILQVSNGCVS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>HSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPCDISRILQVSNGCVS</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>HSGVNQLGGVFVNGRPLPDSTRQKIVELAHSGARPCDISRILQVSNGCVS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>KILGRYYETGSIRPRAIGGSKPRVATPEVVSFIGIAKYKRECPSIFAWIRD</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>KILGRYYETGSIRPRAIGGSKPRVATPEVVSFIGIAKYKRECPSIFAWIRD</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>RLLSEGVCTNDNIPSVSSINRVLRNLASEKQQMGA----------</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>139</td>
<td>RLLSEGVCTNDNIPSVSSINRVLRNLASEKQQMGA----------</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>RLLQENVCTNDNIPSVSSINRVLRNLAAQKEQQSTGSGSSSTSAGNSISA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>206</td>
<td>RLLQENVCTNDNIPSVSSINRVLRNLAAQKEQQSTGSGSSSTSAGNSISA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>---------------SWGTR--PGWYGTSVPGQPTQ-------------</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>174</td>
<td>---------------SWGTR--PGWYGTSVPGQPTQ-------------</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>NHQALQQHQQQSWPPRHYSGSWYPTSLSEIPISSAPNIASTAYASGPS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>355</td>
<td>NHQALQQHQQQSWPPRHYSGSWYPTSLSEIPISSAPNIASTAYASGPS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>-----------------------------DGCQQQE--GGGE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>185</td>
<td>-----------------------------DGCQQQE--GGGE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>LAHSLSPPNDIESLASIGHQRNCPVATEDIHLKKELDGHQSDETGSGE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>405</td>
<td>LAHSLSPPNDIESLASIGHQRNCPVATEDIHLKKELDGHQSDETGSGE</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>NTNISISSNGEDSDEAQMRQLKRKLRQRNRTSFTQIEQIEALEKEFERTHYP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>235</td>
<td>NTNISISSNGEDSDEAQMRQLKRKLRQRNRTSFTQIEQIEALEKEFERTHYP</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>NSNGGASNIKTEDDQARLILKRKLRQRNRTSFTNDQIDSLEKEFERTHYP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>455</td>
<td>NSNGGASNIKTEDDQARLILKRKLRQRNRTSFTNDQIDSLEKEFERTHYP</td>
<td></td>
</tr>
</tbody>
</table>
Sequence alignment

Definition

Given two strings \(v = v_1v_2...v_m \), \(w = w_1w_2...w_n \),

an alignment is an assignment of gaps to positions 0,...,m in \(v \), and 0,...,n in \(w \), so as to line up each letter in one sequence with either a letter, or a gap in the other sequence.
Mutations at the DNA level

SEQUENCE EDITS

- Deletion
- Substitution

REARRANGEMENTS

- Inversion
- Translocation
- Duplication
Scoring an alignment

• A simple scoring scheme:
 • Penalize mismatches by $-\mu$
 • Penalize indels by $-\sigma$
 • Reward matches with $+1$

• Resulting score:

$$#\text{matches} - (#\text{mismatches}) \mu - (#\text{indels}) \sigma$$

• Objective: find the best scoring alignment
Number of pairwise alignments

- Given sequences of length m and n, the number of alignments is:

$$\sum_{k=0}^{\min(m,n)} \binom{m}{k} \binom{n}{k} = \binom{n+m}{n}$$

- For two sequences of length n:

$$\binom{2n}{n} = \frac{(2n)!}{(n!)^2} \approx \frac{2^{2n}}{\sqrt{\pi n}}$$

Derived using Stirling's approximation: $n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$
Substrings and subsequences

Definition: A string x' is a *substring* of a string x, if $x = ux'v$ for some prefix string u and suffix string v

$$(x' = x_i \ldots x_j, \text{ for some } 1 \leq i \leq j \leq |x|)$$

A string x' is a *subsequence* of a string x, if x' can be obtained from x by deleting 0 or more letters

$$(x' = x_{i_1} \ldots x_{i_k}, \text{ for some } 1 \leq i_1 \leq \ldots \leq i_k \leq |x|)$$

Note: a substring is always a subsequence

Example: $x = \text{abracadabra}$

$y = \text{cadabr};$
$z = \text{brcdbr};$

substring
subsequence, not substring
Encoding alignment as a path in a 2-d grid

<table>
<thead>
<tr>
<th>i coords:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>3</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>elements of v</td>
<td>A</td>
<td>T</td>
<td>--</td>
<td>C</td>
<td>--</td>
<td>T</td>
<td>G</td>
<td>A</td>
<td>T</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>elements of w</td>
<td>--</td>
<td>T</td>
<td>G</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>--</td>
<td>A</td>
<td>--</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>j coords:</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

(0,0) → (1,0) → (2,1) → (2,2) → (3,3) → (3,4) → (4,5) → (5,5) → (6,6) → (7,6) → (8,7)

Every alignment is a path in 2-D grid
Alignment as a path
Alignment as a Path in the Edit Graph

\[\text{ATCGTAC} \]

\[\text{w} \]

\[\text{v} \]

- Corresponding path -

\[(0,0) , (1,1) , (2,2) , (2,3) , (3,4) , (4,5) , (5,5) , (6,6) , (7,6) , (7,7)\]
Alignment as a Path in the Edit Graph

\[
\begin{array}{cccccccc}
\text{A} & \text{T} & \text{C} & \text{G} & \text{T} & \text{A} & \text{C} \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
\]

\[
\begin{array}{cccccccc}
\text{A} & \text{T} & \text{G} & \text{T} & \text{T} & \text{T} & \text{T} & \text{T} \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
\]

\[\downarrow\]

Represent indels in \(v\) and \(w\) with score -1.

\[\downarrow\]

Represent matches with score 1.

The score of the alignment is 1.
Alignment as a Path in the Edit Graph

Every path in the edit graph corresponds to an alignment:
Alignment algorithms we will cover

- Global alignment
- Local alignment
- Alignment with affine gap penalties
- Scoring matrices
Our simple scoring scheme

- The score when mismatches are penalized by $-\mu$, indels are penalized by $-\sigma$, and matches are rewarded by $+1$:

$$\#\text{matches} - \mu (\#\text{mismatches}) - \sigma (\#\text{indels})$$
Global Alignment: The Needleman-Wunsch algorithm\(^1\)

Find the best alignment between two strings under our scoring scheme

Input: Strings \(v\) and \(w\) and a scoring scheme

Output: Maximum scoring alignment

\[
s_{i,j} = \max \begin{cases}
 s_{i-1,j-1} + 1 & \text{if } v_i = w_j \\
 s_{i-1,j-1} - \mu & \text{if } v_i \neq w_j \\
 s_{i-1,j} - \sigma \\
 s_{i,j-1} - \sigma
\end{cases}
\]

\(s_{i,j}\) – the score for the best alignment of a length \(i\) prefix of \(v\) and a length \(j\) prefix of \(w\)

\(\mu\) : mismatch penalty

\(\sigma\) : indel penalty

\(^1\)A general method applicable to the search for similarities in the amino acid sequence of two proteins, J Mol Biol. 48(3):443–53, 1970.
Needleman Wunsch (cont)

- What about the base case?
NW as a DP algorithm

```python
NW(v,w,sigma,mu):
    for i in range(0, m):
        si,0 = -sigma * i
    for j in range(0, n):
        s0,j = -sigma * j
    for i in range(1, m):
        for j in range(1, n):
            fill in s_i,j
    return (s_m,n)
```

Runtime: \(O(nm)\)
Memory: \(O(nm)\)
Now What?

- The DP algorithm created the alignment grid.
- To read the best alignment: Follow the pointers from sink.
Scoring Matrices

To generalize scoring, we use a **scoring matrix** δ.

Size of the matrix:

- Alignment of DNA sequences: $(4+1) \times (4+1)$
- Alignment of amino acids: $(20+1) \times (20+1)$

The additional row/column includes scores for the gap character “-”

$$ s_{i,j} = \max \begin{cases}
 s_{i-1,j-1} + \delta(v_i, w_j) \\
 s_{i-1,j} + \delta(v_i, -) \\
 s_{i,j-1} + \delta(-, w_j)
\end{cases} $$