Loop Transformations, Dependences, and Parallelization

Announcements
– Midterm is Friday from 3-4:15 in this room

Today
– Semester long project
– Data dependence recap
 – Parallelism and storage tradeoff
 – Scalar expansion example
– Skewing Smith-Waterman
– Automating transformations like skewing
 – Iteration space representation
 – Transformation representation
 – Applying the transformation to the iteration space
 – Generating code for the new iteration space
Semester Long Project

Posted Online

Main Idea (find a program analysis and/or transformation tool)
 – Demonstrate usage of the tool to the rest of the class (10 minutes, 2-page tutorial)
 – Find 10+ related papers and describe research problem space
 – Describe the space of solutions presented in the papers
 – Evaluate the tool on a benchmark. How well does it solve the problem? What are some limitations?
 – Present your findings to the rest of the class.

Requirements
 – Project proposal due next Friday October 17th
 – In-class demos and 2-page tutorials due Monday November 17th
 – Final report due Friday December 12th
 – In-class presentations Wednesday December 17th, 4:10-6:10pm
Parallelism and Storage Usage Tradeoff

False dependences limit parallelism

Removing false dependences requires more memory/storage

Obtaining performance requires finding an effective tradeoff
Loop-Carried, Storage-Related Dependences

Problem
- Loop-carried dependences inhibit parallelism
- Scalar references result in loop-carried dependences

Example

\[
\begin{align*}
\text{do } i &= 1,6 \\
\quad t &= A(i) + B(i) \\
\quad C(i) &= t + 1/t \\
\text{enddo}
\end{align*}
\]

Can this loop be parallelized? No.
What kind of dependences are these? Anti dependences.

Convention for these slides: Arrays start with upper case letters, scalars do not
Removing False Dependences with Scalar Expansion

Idea
– Eliminate false dependences by introducing extra storage

Example

\[
\begin{align*}
\text{do } & i = 1,6 \\
& T(i) = A(i) + B(i) \\
& C(i) = T(i) + 1/T(i) \\
\text{enddo} \\
&t = T[6]
\end{align*}
\]

Can \textit{this} loop be parallelized?

Disadvantages?
Scalar Expansion Details

Restrictions
- The loop must be a countable loop
 i.e. The loop trip count must be independent of the body of the loop
- The expanded scalar must have no upward exposed uses in the loop

  ```
  do i = 1,6
  print(t)
  t = A(i) + B(i)
  C(i) = t + 1/t
  enddo
  ```
- Nested loops may require much more storage
- When the scalar is live after the loop, we must move the correct array value into the scalar

Privatization is another approach that is similar, one scalar per thread
Automating Loop Transformations with Frameworks

Currently

– Frameworks used *in compiler* to …
 – abstract loops, memory accesses, and data dependences in loop
 – specify the effect of a sequence of loop transformations on the loop, its memory accesses, and its data dependences
 – generate code from the transformed loop
– Loop transformations affect the *schedule* of the loop

Future

– How can framework technology be exposed in the programming model?

Frameworks we will discuss this semester

– Unimodular
– Polyhedral
– Presburger
– Sparse Polyhedral
Protein String Matching Example (smithWaterman.c)

```
for (i=1; i<=a[0]; i++) {
    for (j=1; j<=b[0]; j++) {
        diag    = h[i-1][j-1] + sim[a[i]][b[j]];
        down    = h[i-1][j] + DELTA;
        right   = h[i][j-1] + DELTA;
        max=MAX3(diag, down, right);
        if (max <= 0) {
            h[i][j]=0; xTraceback[i][j]=-1; yTraceback[i][j]=-1;
        } else if (max == diag) {
            h[i][j]=diag; xTraceback[i][j]=i-1; yTraceback[i][j]=j-1;
        } else if (max == down) {
            h[i][j]=down; xTraceback[i][j]=i-1; yTraceback[i][j]=j;
        } else {
            h[i][j]=right; xTraceback[i][j]=i; yTraceback[i][j]=j-1;
        }
        if (max > Max){
            Max=max; xMax=i; yMax=j;
        }
    }
}  // end for loops
```
Skewing (smithWaterman.c)

// Let j'=i+j and i'=i.
for (i'=1;i'<=a[0];i'+++) {
 for (j'=i'+1;j'<=i'+b[0];j'+++) {
 diag = h[i'-1][j'-i'-1] + sim[a[i']][b[j'-i']];
 down = h[i'-1][j'-i'] + DELTA;
 right = h[i'][j'-i'-1] + DELTA;
 max=MAX3(diag,down,right);
 if (max <= 0) {
 h[i'][j'-i']=0; xTraceback[i'][j'-i']=-1; yTraceback[i'][j'-i']=-1;
 } else if (max == diag) {
 h[i'][j'-i']=diag; xTraceback[i'][j'-i']=i'-1;
 yTraceback[i'][j'-i']=j'-i'-1;
 } else if (max == down) {
 h[i'][j'-i']=down; xTraceback[i'][j'-i']=i'-1;
 yTraceback[i'][j'-i']=j'-i';
 } else {
 h[i'][j'-i']=right; xTraceback[i'][j'-i']=i';
 yTraceback[i'][j'-i']=j'-i'-1;
 }
 if (max > Max){ Max=max; xMax=i'; yMax=j'-i';
 }
}} // end for loops
Iteration Space Representation

Original code

```plaintext
do i = 1, 6
    do j = 1, 5
        A(i, j) = A(i-1, j+1) + 1
    enddo
enddo
```

Represent the iteration space

– As an intersection of inequalities
– The iteration space is the integer tuples within the intersection

Bounds:

\[
\begin{align*}
i & \leq 6 \\
i & \leq 6 \\
1 & \leq j \\
j & \leq 5
\end{align*}
\]

\[
\begin{bmatrix}
-1 & 0 \\
1 & 0 \\
0 & -1 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
i \\
j
\end{bmatrix}
\leq
\begin{bmatrix}
-1 \\
6 \\
-1 \\
5
\end{bmatrix}
\]
Lexicographical Order as Schedule

Iteration point
– Integer tuple with dimensionality \(d \) \((i_0, i_1, \ldots, i_d) \)

Lexicographical Order
– First order the iteration points by \(i_0 \), then \(i_1 \), \ldots and finally \(i_d \).

\[
(i_0, i_1, \ldots, i_{d-1}) \prec (i_0, i_1, \ldots, i_{d-1}) \equiv \\
(i_0 < j_0) \lor (i_0 = j_0 \land i_1 < j_1) \lor \ldots (i_0 = j_0 \land i_1 = j_1 \land \ldots i_{d-1} = j_{d-1})
\]
Frameworks for Loop Transformations

Loop Transformations as functions

\[\vec{i}' = f(\vec{i}) \]

Unimodular Loop Transformations [Banerjee 90],[Wolf & Lam 91]
- can represent loop permutation, loop reversal, and loop skewing
- unimodular linear mapping (determinant of matrix is + or - 1)
 \[\vec{i}' = T\vec{i} \]
 - T is a matrix, i and i’ are iteration vectors
- example
 \[
 \begin{bmatrix}
 i' \\
 j'
 \end{bmatrix}
 =
 \begin{bmatrix}
 0 & 1 \\
 1 & 1
 \end{bmatrix}
 \begin{bmatrix}
 i \\
 j
 \end{bmatrix}
 \]
- limitations
 - only perfectly nested loops
 - all statements are transformed the same
Loop Skewing

Original code

\[
\begin{align*}
\text{do } & i = 1, 6 \\
\text{do } & j = 1, 5 \\
& A(i, j) = A(i-1, j+1) + 1 \\
\text{endo} \\
\text{endo}
\end{align*}
\]

Distance vector: \((1, -1)\)

Skewing:

\[
\begin{bmatrix}
1 & 0 \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
i \\
j
\end{bmatrix}
=
\begin{bmatrix}
i \\
i + j
\end{bmatrix}
\]
Transforming the Dependences and Array Accesses

Original code

\[
\begin{align*}
do \ i = 1,6 \\
do \ j = 1,5 \\
\quad A(i,j) = A(i-1,j+1)+1 \\
enddo \\
enddo
\end{align*}
\]

Dependence vector:

\[
\begin{bmatrix}
1 & 0 \\
1 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 \\
-1 \\
\end{bmatrix} =
\begin{bmatrix}
1 \\
0 \\
\end{bmatrix}
\]

New Array Accesses:

\[
\begin{align*}
A \left(\begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
i \\
j \\
\end{bmatrix} + \begin{bmatrix}
0 \\
0 \\
\end{bmatrix} \right) &= A(i,j) \\
A \left(\begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
-1 & 1 \\
\end{bmatrix}
\begin{bmatrix}
i' \\
j' \\
\end{bmatrix} + \begin{bmatrix}
0 \\
0 \\
\end{bmatrix} \right) &= A(i',j' - i') \\
A \left(\begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
i \\
j \\
\end{bmatrix} + \begin{bmatrix}
-1 \\
1 \\
\end{bmatrix} \right) &= A(i - 1, j + 1) \\
A \left(\begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
-1 & 1 \\
\end{bmatrix}
\begin{bmatrix}
i' \\
j' \\
\end{bmatrix} + \begin{bmatrix}
-1 & 1 \\
\end{bmatrix} \right) &= A(i' - 1, j' - i' + 1)
\end{align*}
\]

CS 553
Intro to Automating Loop Transformations
Transforming the Loop Bounds

Original code

\[
\begin{align*}
&\text{do } i = 1, 6 \\
&\hspace{1em} \text{do } j = 1, 5 \\
&\hspace{2em} A(i, j) = A(i-1, j+1) + 1 \\
&\text{enddo} \\
&\text{enddo}
\end{align*}
\]

Bounds:

\[
\begin{bmatrix}
-1 & 0 \\
1 & 0 \\
0 & -1 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
i \\
j
\end{bmatrix}
\leq
\begin{bmatrix}
-1 \\
6 \\
-1 \\
5
\end{bmatrix}
\]

\[
\begin{bmatrix}
-1 & 0 \\
1 & 0 \\
0 & -1 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
i' \\
j'
\end{bmatrix}
\leq
\begin{bmatrix}
-1 \\
6 \\
-1 \\
5
\end{bmatrix}
\]

Transformed code

\[
\begin{align*}
&\text{do } i' = 1, 6 \\
&\hspace{1em} \text{do } j' = 1+i', 5+i' \\
&\hspace{2em} A(i', j'-i') = A(i'-1, j'-i'+1) + 1 \\
&\text{enddo} \\
&\text{enddo}
\end{align*}
\]
Revisiting (smithWaterman.c)

for (i=1; i<=a[0]; i++) {
 for (j=1; j<=b[0]; j++) {
 diag = h[i-1][j-1] + sim[a[i]][b[j]];
 down = h[i-1][j] + DELTA;
 right = h[i][j-1] + DELTA;
 }
 ...
}

Let $j' = i+j$ and $i' = i$.

for (i'=1; i'<=a[0]; i'++) {
 for (j'=i+1; j'<=i+b[0]; j'++) {
 diag = h[i'-1][j'-i'-1] + sim[a[i']][b[j'-i']];
 down = h[i'-1][j'-i'] + DELTA;
 right = h[i'][j'-i'-1] + DELTA;
 }
 ...
}
Transformation Legality

Recall …

– A dependence vector is legal if it is lexicographically non-negative.
– Applying the transformation function to each dependence vector produces a dependence vector for the new iteration space.

When is a transformation legal assuming a lexicographical schedule?

What about parallelism?
Converting C loops to iteration space representation

Analyses needed

– Loop analysis
 – Loop bounds from AST or control-flow graph
 – Induction variable detection
– Pointer analysis
 – Do pointers point at same or overlapping memory?
 – Note that in C can cast a pointer to an integer and back and can do pointer arithmetic.
 – In general requires whole program analysis.
– Dependence analysis

Is this even possible?

– Current tools make the optimistic pointer assumption
– We need programming models that simplify or remove the need for such analyses
Concepts

Parallelism and Memory Usage tradeoff

Transformation Frameworks
- Representing the iteration space
- Representing transformations
- Applying transformations to the iteration space, dependences, and array accesses
- Testing the legality of a transformation

Compiler analyses needed in C to obtain an iteration space representation

References

Next Time

Homework

– Study for the midterm by doing example problems.

Lecture

– Midterm review

– After midterm: Using the unimodular framework to represent other loop transformations