The Polyhedral Model (Dependences and Transformations)

Announcements
- Project proposal is due THIS Friday

Today
- Automatic parallelization
- Transformation models/frameworks
- Polyhedral model
 - Iteration space representation
 - Data dependence problem and representation
 - Transformation representation and legality check

Protein String Matching Example (smithWaterman.c)

```c
for (i=1;i<=a[0];i++) {
    for (j=1;j<=b[0];j++) {
        diag    = h[i-1][j-1] + sim[a[i]][b[j]];
        down    = h[i-1][j] + DELTA;
        right   = h[i][j-1] + DELTA;
        max=MAX3(diag,down,right);
        if (max <= 0) {
            h[i][j]=0; xTraceback[i][j]=-1; yTraceback[i][j]=-1;
        } else if (max == diag) {
            h[i][j]=diag; xTraceback[i][j]=i-1; yTraceback[i][j]=j-1;
        } else if (max == down) {
            h[i][j]=down; xTraceback[i][j]=i-1; yTraceback[i][j]=j;
        } else {
            h[i][j]=right; xTraceback[i][j]=i; yTraceback[i][j]=j-1;
        }
        if (max > Max) {
            Max=max; xMax=i; yMax=j;
        }
    }
} // end for loops
```
Skewing smithWaterman.c

```c
for (i=1;i<=a[0];i++) {
    for (j=1;j<=b[0];j++) {
        diag = h[i-1][j-1] + sim[a[i]][b[j]];
        down = h[i-1][j] + DELTA;
        right = h[i][j-1] + DELTA;
        ...
    }
}
```

Let \(j'=i \) and \(i'=i+j \).

Thus \(i=j' \) and \(j=i'-j' \).

```c
for (i'=2;i'<=a[0]+b[0];i'++) {
    for (j'=max(1,i'-b[0]); j'<=min(a[0],i'-1); j'++) {
        diag = h[j'-1][i'-j'-1] + sim[a[i]][b[i'-j']];
        down = h[j'-1][i'-j'] + DELTA;
        right = h[j'][i'-j'-1] + DELTA;
        ...
    }
}
```

Automatic Parallelization

Input program has a set of operations \(E \) with a strict order

Find a partial order on \(E \) that is deterministic and results in the same output as the original strict total order.

Overall process
- Translate the code to a model
- Select a transformation/schedule
 - Determination of partial order on \(E \), data dependence analysis
 - Ensure that the loop transformation/schedule is legal
- Transform the model and generate the transformed code
What should the model be?

Bernstein conditions
- Let u and v be operations, $M(u)/M(v)$ be the set memory locations written by u/v, $R(u)/R(v)$ be the set of memory locations read by u/v.
- If u precedes v and the intersection of $M(u)$ and $R(v)$ is non-empty, then there is a flow dependence.
- If u precedes v and the intersection of $R(u)$ and $M(v)$ is non-empty, then there is an anti dependence.
- If u precedes v and the intersection of $M(u)$ and $M(v)$ is non-empty, then there is an output dependence.

Problematic Example

$$M(u) = \{a^n + b^n \mid n > 2 \land a, b, n \in \mathbb{Z}\}$$

$$R(v) = \{c^n \mid n > 2 \land c, n \in \mathbb{Z}\}$$

Dependence Testing in General

General code
```
    do i_1 = l_1, h_1 
    
    ... 
    
    do i_n = l_n, h_n 
    
    ... A(f(i_1, ..., i_n)) 
    
    ... A(g(i_1, ..., i_n)) 
    
    enddo 
    
    ... 
    
    enddo
```

There exists a dependence between iterations $I=(i_1, ..., i_n)$ and $J=(j_1, ..., j_n)$ when at least one of the accesses is a write and
- $f(I) = g(J)$
- $(l_1, ..., l_n) < I, J < (h_1, ..., h_n)$
- $I << J$ or $J << I$, where $<<$ is lexicographically less
Algorithms for Solving the Dependence Problem

Heuristics can say NO or MAYBE
- GCD test (Banerjee76, Towle76): determines whether integer solution is possible, no bounds checking
- Banerjee test (Banerjee 79): checks real bounds
- I-Test (Kong et al. 90): integer solution in real bounds
- Lambda test (Li et al. 90): all dimensions simultaneously
- Delta test (Goff et al. 91): pattern matches for efficiency
- Power test (Wolfe et al. 92): extended GCD and Fourier-Motzkin combination

Exact solutions, exponential worst-case since integer linear programming is NP-complete
- Parametric Integer Programming (Feautrier91), based on the Simplex algorithm
- Omega test (Pugh92), based on the Fourier-Motzkin elimination algorithm

Dependence Testing

Consider the following code…

```fortran
    do i = 1, 5
        A(3*i+2) = A(2*i+1)+1
    enddo
```

Question
- How do we determine whether one array reference depends on another across iterations of an iteration space?
Dependence Testing: Simple Case

Sample code

\[
\begin{align*}
\text{do } & i = l, h \\
& A(a*i+c_1) = \ldots A(a*i+c_2) \\
\text{enddo}
\end{align*}
\]

Dependence?
- \(a*i_1+c_1 = a*i_2+c_2\), or
- \(a*i_1 - a*i_2 = c_2 - c_1\)
- Solution may exist if \(a\) divides \(c_2 - c_1\)

GCD Test

Idea
- Generalize test to linear functions of iterators/induction variables

Code

\[
\begin{align*}
\text{do } & i = l_1, h_i \\
& \text{do } j = l_j, h_j \\
& A(a_1*i + a_2*j + a_0) = \ldots A(b_1*i + b_2*j + b_0) \ldots \\
& \text{enddo} \\
\text{enddo}
\end{align*}
\]

Again
- \(a_1*i_1 - b_1*i_2 + a_2*j_1 - b_2*j_2 = b_0 - a_0\)
- Solution may exist if \(\gcd(a_1, a_2, b_1, b_2)\) divides \(b_0 - a_0\)
Example

Code

do i = l_i, h_i
 do j = l_j, h_j
 A(4*i + 2*j + 1) = ... A(6*i + 2*j + 4) ...
 enddo
enddo

gcd(4, -6, 2, -2) = 2

Does 2 divide 4 - 1?

Banerjee Test

for (i=L; i<=U; i++) {
 x[a0 + a1*i] = ...
 ... = x[b0 + b1*i]
}

Does a0 + a1*i = b0 + b1*i' for some real i and i'? If so then (a1*i - b1*i') = (b0 - a0)

Determine upper and lower bounds on (a1*i - b1*i')

for (i=1; i<=5; i++) {
 x[i+5] = x[i];
}

upper bound = a1*max(i) - b1*min(i') = 4
lower bound = a1*min(i) - b1*max(i') = -4
b_0 - a_0 =
Polyhedron

source: http://www.cse.ohio-state.edu/~pouchet/lectures/888.11.lect1.html

Affine functions
- A function $f : \mathbb{K}^m \to \mathbb{K}^n$ is affine if there exists a vector $\vec{b} \in \mathbb{K}^n$ and a matrix $A \in \mathbb{K}^{n \times m}$ such that $\forall \vec{x} \in \mathbb{K}^m, f(\vec{x}) = A\vec{x} + \vec{b}$

Affine half spaces
- An affine half-space of \mathbb{K}^m (affine constraint) is defined as a set of points $\{ \vec{x} \in \mathbb{K}^m | \vec{a} \cdot \vec{x} \leq \vec{b} \}$

Polyhedron
- A set $S \subseteq \mathbb{K}^m$ is a polyhedron if there exists a system of finite inequalities $A\vec{x} \leq \vec{b}$ such that $P = \{ \vec{x} \in \mathbb{K}^m | A\vec{x} \leq \vec{b} \}$
- Equivalently it is the intersection of finitely many half-spaces.

Intersection between polyhedral sets
- When you intersect two polyhedral sets the results is a polyhedral set.
- Many questions we need to automate check whether a polyhedral set or sets are empty or not.
 - Is there a dependence at a certain loop level?
 - Is a transformation legal?

Next Time

Reading
- Advanced Compiler Optimizations for Supercomputers by Padua and Wolfe

Homework
- Project proposal due this Friday, October 17th

Lecture
- Code generation