Unimodular Transformations and Dependences

Announcements
– Project proposal re-write due this Friday, October 24th.
– PA3 has been posted, due Monday November 3rd.

Today
– PA3 intro
– Unimodular transformation framework rehash with loop reversal
– Dependence problem
 – Lexicographical constraints to compute output, anti, or flow.
 – Computing direction/distance vectors
– Testing transformation legality
– Converting C++ code to iteration space representation

Frameworks for Loop Transformations

Loop Transformations as functions
\[\vec{i}' = f(\vec{i}) \]

Unimodular Loop Transformations [Banerjee 90],[Wolf & Lam 91]
– can represent loop permutation, loop reversal, and loop skewing
– unimodular linear mapping (determinant of matrix is + or - 1)
\[\vec{i}' = T\vec{i} \]
 – T is a matrix, i and i’ are iteration vectors
 – example
\[
\begin{bmatrix}
 i' \\
 j'
\end{bmatrix}
= \begin{bmatrix}
 0 & 1 \\
 1 & 1
\end{bmatrix}
\begin{bmatrix}
 i \\
 j
\end{bmatrix}
\]
– limitations
 – only perfectly nested loops
 – all statements are transformed the same
Loop Reversal

Idea
– Change the direction of loop iteration
 (i.e., From low-to-high indices to high-to-low indices or vice versa)

Benefits
– Could improve cache performance
– Enables other transformations

Example

\[
\begin{align*}
\text{do } i &= 6, 1, -1 \\
& \quad \text{A}(i) = \text{B}(i) + \text{C}(i) \\
& \quad \text{enddo}
\end{align*}
\]

\[
\begin{align*}
\text{do } i &= 1, 6 \\
& \quad \text{A}(i) = \text{B}(i) + \text{C}(i) \\
& \quad \text{enddo}
\end{align*}
\]

Loop Reversal and Distance Vectors

Impact
– Reversal of loop \(i\) negates the \(i^{th}\) entry of all distance vectors associated with the loop
– What about direction vectors?

When is reversal legal?
– When the loop being reversed does not carry a dependence
 (i.e., When the transformed distance vectors remain legal)

Example

\[
\begin{align*}
\text{do } i &= 1, 5 \\
& \quad \text{do } j = 1, 6 \\
& \quad \text{A}(i, j) = \text{A}(i-1, j-1) + 1 \\
& \quad \text{enddo} \\
& \quad \text{enddo}
\end{align*}
\]

\[
\begin{align*}
\text{Dependence: Flow} & \quad \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} i \\ j \end{bmatrix} = \begin{bmatrix} i \\ -j \end{bmatrix} \\
\text{Distance Vector: (1,1)} & \quad \text{Transformed Distance Vector: (1,-1)} \quad \text{legal}
\end{align*}
\]
Unimodular Framework

Does it have an affine component?
– Actually no. That moves us to the polyhedral model.

Why a unimodular matrix?
– Has an inverse and the inverse is unimodular.
– Preserves the volume of a polytope.

Transformations we can automate
– Loop permutation, skewing, and reversal
– Any combination of the above

Lexicographical Order Constraints in Data Dependencies

Iteration point
– Integer tuple with dimensionality d \((i_0, i_1, \ldots, i_d)\)

Lexicographical Order
– First order the iteration points by \(i_0\), then \(i_1\), … and finally \(i_d\).

\[(i_0, i_1, \ldots, i_{d-1}) \prec (i_0, i_1, \ldots, i_{d-1}) \equiv \]
\[(i_0 < j_0) \lor (i_0 = j_0 \land i_1 < j_1) \lor \ldots (i_0 = j_0 \land i_1 = j_1 \land \ldots i_{d-1} = j_{d-1})\]
Dependence Testing in General

General code

\[
\begin{align*}
& \text{do } i_1 = l_1, h_1 \\
& \quad \ldots \\
& \text{do } i_n = l_n, h_n \\
& \quad \ldots A(f(i_1, \ldots, i_n)) \\
& \quad \ldots A(g(i_1, \ldots, i_n)) \\
& \quad \text{enddo} \\
& \quad \ldots \\
& \text{enddo}
\end{align*}
\]

There exists a dependence between iterations \(I = (i_1, \ldots, i_n)\) and \(J = (j_1, \ldots, j_n)\) when at least one of the accesses is a write and

- \(f(I) = g(J)\)
- \((l_1, \ldots, l_n) < I, J < (h_1, \ldots, h_n)\)
- \(I << J\) or \(J << I\), where \(<<\) is lexicographically less

Direction/Dependence Vectors

\[
\begin{align*}
do \ i & = 1, 5 \\
& \text{do } j = 1, 6 \\
& \quad A(i+1, j-1) = A(i-2, j+1) + \exp(j, j) \\
& \quad \text{enddo} \\
& \text{enddo}
\end{align*}
\]

Set up the dependence problem

Subtract the source from the target iteration
Specifying Loop Transformations, Various Frameworks

Unimodular
\[f(\vec{i}) = T\vec{i} \]

Polyhedral/Affine Transformations (also called a schedule or Change of Basis)
\[f(\vec{i}) = T\vec{i} + \vec{j} \]

Kelly and Pugh (Omega, Presburger in general case, also called Polyhedral)
\[\{ \vec{i} \rightarrow \vec{x} \mid \vec{x} = T\vec{i} + \vec{j} \} \]

– As shown is same as polyhedral.
– More general in that can do Presburger arithmetic, which include forall and there exists quantifiers

Loop Fusion using Kelly and Pugh (Omega) Notation

Idea
– Combine multiple loop nests into one

Example
\[
\begin{align*}
do \ i = 1,n & \\
& A(i) = A(i-1) \\
& \enddo \\
do \ j = 1,n & \\
& B(j) = A(j)/2 \\
& \enddo
\]

\[
\begin{align*}
do i = 1,n & \\
& A(i) = A(i-1) \\
& B(i) = A(i)/2 \\
& \enddo
\]

Pros
– May improve data locality
– Reduces loop overhead
– Enables array contraction (opposite of scalar expansion)
– May enable better instruction scheduling

Cons
– May hurt data locality
– May hurt icache performance
Legality of Loop Fusion

Basic Conditions
- Both loops must have same structure
 - Same loop depth
 - Same loop bounds
 - Same iteration directions
- Dependences must be preserved
 e.g., Flow dependences must not become anti dependences

```
do i = 1, n
  body1
  body2
enddo
```

- All cross-loop dependences flow from body1 to body2
- Ensure that fusion does not introduce dependences from body2 to body1

Loop Fusion Example

What are the dependences?

```
do i = 1, n
  s_1 A(i) = B(i) + 1
  s_2 C(i) = A(i)/2
  s_3 D(i) = 1/C(i+1)
enddo
```

What are the dependences?

```
do i = 1, n
  s_1 A(i) = B(i) + 1
  s_2 C(i) = A(i)/2
  s_3 D(i) = 1/C(i+1)
enddo
```

Fusion changes the dependence between s_2 and s_3, so fusion is illegal

Is there some transformation that will enable fusion of these loops?
Loop Fusion Example (cont)

Loop reversal is legal for the original loops
– Does not change the direction of any dep in the original code
– Will reverse the direction in the fused loop: \(s_3 \delta^a s_2 \) will become \(s_2 \delta^f s_3 \)

\[
\begin{align*}
&\text{do } i = -n,-1 \\
&\quad \text{s_1 } A(-i) = B(-i) + 1 \\
&\text{enddo} \\
&\quad \text{s_1} \delta^f s_2 \\
&\text{do } i = -n,-1 \\
&\quad \text{s_2 } C(-i) = A(-i)/2 \\
&\text{enddo} \\
&\quad \text{s_2} \delta^f s_3 \\
&\text{do } i = -n,-1 \\
&\quad \text{s_3 } D(-i) = 1/C(-i+1) \\
&\text{enddo} \\
\end{align*}
\]

After reversal and fusion all original dependences are preserved

Kelly and Pugh Transformation Framework

Specify iteration space as a set of integer tuples
\[
\{ [i, j] \mid 1 \leq i, j \leq n \}
\]

Specify data dependences as relations between integer tuples (i.e., data dependence relations)
\[
\begin{align*}
&\{ [i_1, j_1] \rightarrow [i_2, j_2] \mid (i_1 = i_2 - 1) \land (j_1 = j_2 - 1) \land (1 \leq i_1, j_1, i_2, j_2 \leq n) \land i_1 < i_2 \} \\
&\cap \{ [i_1, j_1] \rightarrow [i_2, j_2] \mid (i_1 = i_2 - 1) \land (j_1 = j_2 - 1) \land (1 \leq i_1, j_1, i_2, j_2 \leq n) \land i_1 = i_2 \land j_1 < j_2 \}
\end{align*}
\]

Specify transformations as relations/mappings between integer tuples
\[
\{ [i, j] \rightarrow [i', j'] \mid (i' = j) \land (j' = i) \}
\]

Execute iterations in transformed iteration space in lexicographic order
Loop Fusion Example

What are the dependences?

```plaintext
do i = 1, n
s_1 A(i) = B(i) + 1
enddo

do i = 1, n
s_2 C(i) = A(i)/2
enddo

do i = 1, n
s_3 D(i) = 1/C(i+1)
enddo
```

What are the dependences?

```plaintext
do i = 1, n
s_1 A(i) = B(i) + 1
s_1 \delta^f s_2

s_2 C(i) = A(i)/2
s_2 \delta^f s_3

s_3 D(i) = 1/C(i+1)
enddo
```

Fusion changes the dependence between \(s_2\) and \(s_3\), so fusion is illegal

Is there some transformation that will enable fusion of these loops?

Specifying Loop Fusion in Kelly and Pugh Framework

Specify iteration space as a set of integer tuples

\[IS_1 = \{[1, i_1, 1] \mid 1 \leq i_1 \leq n\} \]
\[IS_2 = \{[2, i_2, 1] \mid 1 \leq i_2 \leq n\} \]
\[IS_3 = \{[3, i_3, 1] \mid 1 \leq i_3 \leq n\} \]
\[IS = IS_1 \cup IS_2 \cup IS_3 \]

Specify data dependences as mappings between integer tuples (i.e., data dependence relations, should also include bounds)

\[D_{12} = \{[1, i_1, 1] \rightarrow [2, i_2, 1] \mid i_1 = i_2\} \]
\[D_{23} = \{[2, i_2, 1] \rightarrow [3, i_3, 1] \mid i_2 = i_3 + 1\} \]
\[D = D_{12} \cup D_{23} \]

Specify transformations as mappings between integer tuples

\[T_1 = \{[1, i_1, 1] \rightarrow [1, i'_1, 1] \mid i'_1 = i_1\} \]
\[T_2 = \{[2, i_2, 1] \rightarrow [1, i'_2, 2] \mid i'_2 = i_2\} \]
\[T_3 = \{[3, i_3, 1] \rightarrow [1, i'_3, 3] \mid i'_3 = i_3\} \]
\[T = T_1 \cup T_2 \cup T_3 \]
Checking Legality in Kelly & Pugh Framework

For each dependence, \([I] \rightarrow [J]\) the transformed \(I\) iteration must be executed after the transformed \(J\) iteration.

Loop Fusion Example (cont)

Loop reversal is legal for the original loops

– Does not change the direction of any dep in the original code
– Will reverse the direction in the fused loop: \(s_3^a s_2\) will become \(s_2^a s_3\)

\[
\begin{align*}
do & \ i = -n, -1 \\
s_1 & \ A(-i) = B(-i) + 1 \\
& \text{endo} \\
s_1 & \ s_1^f s_2 \\
do & \ i = -n, -1 \\
s_2 & \ C(-i) = A(-i)/2 \\
& \text{endo} \\
s_2 & \ s_2^f s_3 \\
do & \ i = -n, -1 \\
s_3 & \ D(-i) = 1/C(-i+1) \\
& \text{endo}
\end{align*}
\]

After reversal and fusion all original dependences are preserved
Fusion Example

Can we fuse these loop nests?

```
do i = 1,n
   X(i) = 0
   do k = 1,n
      do j = 1,n
         X(k) = X(k) + A(k,j) * Y(j)
      enddo
   enddo
endo
do j = 1,n
endo
```

Fusion of these loops would violate this dependence.

```
do i = 1,n
   X(i) = 0
   do k = 1,n
      do j = 1,n
         X(k) = X(k) + A(k,i) * Y(i)
      enddo
   enddo
endo
do k = 1,n
endo
```

Fusion Example (cont)

Use loop interchange to preserve dependences.

```
do i = 1,n
   X(i) = 0
   do j = 1,n
      do k = 1,n
         X(k) = X(k) + A(k,j) * Y(j)
      enddo
   enddo
endo
do j = 1,n
endo
```

```
do i = 1,n
   X(i) = 0
   do k = 1,n
      do j = 1,n
         X(i) = X(i) + A(i,j) * Y(j)
      enddo
   enddo
endo
do i = 1,n
endo
```
Two different ways to deal with imperfect loop nesting

Add dimensionality to the schedule for statement order
- Approach taken by Kelly and Pugh

Embed all statements in same iteration space
- Use initial statement order as the tie breaker

Difference
- Has an effect on the scheduling algorithms
- Has an effect on the code generation algorithms

Next Time

Reading
- Advanced Compiler Optimizations for Supercomputers by Padua and Wolfe

Homework
- PA3 is due Monday November 2nd

Lecture
- Finish K&P framework and iscc tool
Loop Fission (Loop Distribution)

Idea
- Split a loop nest into multiple loop nests (the inverse of fusion)

Example

```plaintext
do i = 1,n
    A(i) = B(i) + 1
    C(i) = A(i)/2
enddo
```

Motivation?
- Produces multiple (potentially) less constrained loops
- May improve locality
- Enable other transformations, such as interchange

Legality?

```plaintext
do i = 1,n
    A(i) = B(i) + 1
    C(i) = A(i)/2
enddo
```

Loop Fission (cont)

Legality
- Fission is legal when the loop body contains no cycles in the dependence graph

```plaintext
Cycles cannot be preserved because after fission all cross-loop dependences flow from body1 to body2
```
Loop Fission Example

Recall our fusion example

\[
\begin{align*}
 &\text{do } i = 1, n \\
 &s_1 \quad A(i) = B(i) + 1 \\
 &\text{enddo} \\
 &s_2 \quad C(i) = A(i)/2 \\
 &\text{enddo} \\
 &s_3 \quad D(i) = 1/C(i+1) \\
 &\text{enddo}
\end{align*}
\]

Can we perform fission on this loop?

\[
\begin{align*}
 &\text{do } i = 1, n \\
 &s_1 \quad A(i) = B(i) + 1 \\
 &s_2 \quad C(i) = A(i)/2 \\
 &s_3 \quad D(i) = 1/C(i+1) \\
 &\text{enddo}
\end{align*}
\]

Loop Fission Example (cont)

If there are no cycles, we can reorder the loops with a topological sort

\[
\begin{align*}
 &\text{do } i = 1, n \\
 &s_1 \quad A(i) = B(i) + 1 \\
 &\text{enddo} \\
 &s_2 \quad C(i) = A(i)/2 \\
 &\text{enddo} \\
 &s_3 \quad D(i) = 1/C(i+1) \\
 &\text{enddo}
\end{align*}
\]

Can we perform fission on this loop?

\[
\begin{align*}
 &\text{do } i = 1, n \\
 &s_1 \quad A(i) = B(i) + 1 \\
 &s_2 \quad C(i) = A(i)/2 \\
 &s_3 \quad D(i) = 1/C(i+1) \\
 &\text{enddo}
\end{align*}
\]