Tiling: A Data Locality Optimizing Algorithm

Previously
 – Unroll and Jam

Homework
 – PA3 is due Monday November 2nd

Today
 – Unroll and Jam is tiling
 – Code generation for fixed-sized tiles
 – Paper writing and critique with Lam and Wolfe, “A Data Locality Optimizing Algorithm” as an example
Unroll and Jam

Idea
– Restructure loops so that loaded values are used many times per iteration

Unroll and Jam
– Unroll the outer loop some number of times
– Fuse (Jam) the resulting inner loops

Example

```
do j = 1,2*n
    do i = 1,m
        A(j) = A(j) + B(i)
    enddo
endo
```

Unroll the Outer Loop

```
do j = 1,2*n by 2
    do i = 1,m
        A(j)   = A(j)   + B(i)
    enddo
endo
do i = 1,m
    A(j+1) = A(j+1) + B(i)
endo
```
Unroll and Jam Example (cont)

Unroll the Outer Loop
\[
\begin{align*}
\text{do } j & = 1, 2n \text{ by 2} \\
& \quad \text{do } i = 1, m \\
& \qquad A(j) = A(j) + B(i) \\
& \quad \text{enddo} \\
& \quad \text{do } i = 1, m \\
& \qquad A(j+1) = A(j+1) + B(i) \\
& \quad \text{enddo} \\
& \text{enddo}
\end{align*}
\]

- The inner loop has 1 load per iteration and 2 floating point operations per iteration
- We reuse the loaded value of $B(i)$
- Aim to match the machine balance, how many floating point ops per load?

Jam the inner loops
\[
\begin{align*}
\text{do } j & = 1, 2n \text{ by 2} \\
& \quad \text{do } i = 1, m \\
& \qquad A(j) = A(j) + B(i) \\
& \qquad A(j+1) = A(j+1) + B(i) \\
& \quad \text{enddo} \\
& \text{enddo}
\end{align*}
\]
Tiling

A non-unimodular transformation that ...
– groups iteration points into tiles that are executed atomically
– can improve spatial and temporal data locality
– can expose larger granularities of parallelism

Implementing tiling
– how can we specify tiling?
– when is tiling legal?
– how do we generate tiled code?

\[
\begin{align*}
&\text{do } ii = 1, 6, \text{ by } 2 \\
&\text{do } jj = 1, 5, \text{ by } 2 \\
&\text{do } i = ii, ii+2-1 \\
&\text{do } j = jj, \min(jj+2-1, 5) \\
&A(i, j) = \ldots
\end{align*}
\]
Unroll and Jam IS Tiling (followed by inner loop unrolling)

Original Loop

```java
    do j = 1,2*n
        do i = 1,m
            A(j) = A(j) + B(i)
        enddo
    enddo
```

After Tiling

```java
    do jj = 1,2*n by 2
        do i = 1,m
            do j = jj, jj+2-1
                A(j) = A(j) + B(i)
            enddo
        enddo
    enddo
```

After Unroll and Jam

```java
    do jj = 1,2*n by 2
        do i = 1,m
            A(j) = A(j) + B(i)
            A(j+1) = A(j+1) + B(i)
        enddo
    enddo
```
Code Generation for Tiling

Fixed-size Tiles
- Omega library
- Cloog
- for rectangular space and tiles, straight-forward

Parameterized tile sizes
- Parameterized tiled loops for free, PLDI 2007
- HiTLOG - A Tiled Loop Generator that is part of AlphaZ

Overview of decoupled approach
- find polyhedron that may contain any loop origins
- generate code that traverses that polyhedron
- post process the code to start a tile origins and step by tile size
- generate loops over points in tile to stay within original iteration space and within tile

\[
\begin{align*}
 \text{do } ii &= 1, 6, \text{ by } 2 \\
 \text{do } jj &= 1, 5, \text{ by } 2 \\
 \text{do } i &= ii, ii+2-1 \\
 \text{do } j &= jj, \min(jj+2-1, 5) \\
 A(i, j) &= \ldots
\end{align*}
\]
Specifying Tiling

Rectangular tiling
- tile size vector \((s_1, s_2, \ldots, s_d)\)
- tile offset, \((o_1, o_2, \ldots, o_d)\)

Possible Transformation Mappings
- creating a tile space
 \[
 \{[i, j] \rightarrow [ti, tj, i, j] \mid ti = floor((i - o_1)/s_1) \\
 \quad \land \quad tj = floor((j - o_2)/s_2)\}
 \]
- keeping tile iterators in original iteration space
 \[
 \{[i, j] \rightarrow [ii, jj, i, j] \mid ii = s_1 \cdot floor((i - o_1)/s_1) + o_1 \\
 \quad \land \quad jj = s_2 \cdot floor((j - o_2)/s_2) + o_2\}\]
Using iscc to do code generation for tiling

Iteration space: \(S := \{ s[i,j] : 1 \leq i \leq 6 \land 1 \leq j \leq 5 \}; \)

Tiling specification

\(T := \{ s[i,j] \mapsto [t_i,t_j,i,j] : t_i = (i-1)/2 \land t_j = (j-1)/2 \}; \)

Gives output but not correct.

Getting rid of integer division

\(t_i = (i-1)/2 \) becomes

\(0 \leq r_i < 2 \land (i-1) = 2 \cdot t_i + r_i \)

\(t_j = (j-1)/2 \) becomes

\(0 \leq r_j < 2 \land (j-1) = 2 \cdot t_j + r_j \)

\(T := \{ s[i,j] \mapsto [t_i,t_j,i,j] : \exists r_i, r_j : \\
 0 \leq r_i < 2 \land i-1 = t_i \cdot 2 + r_i \\
 0 \leq r_j < 2 \land j-1 = t_j \cdot 2 + r_j \}; \)

Let’s try other specification that doesn’t create new tile space.
Concepts

Unroll and Jam is the same as Tiling with the inner loop unrolled

Tiling can improve ...
- loop balance
- spatial locality
- data locality
- computation to communication ratio

Implementing tiling
- specification
- checking legality
- code generation
Paper Writing and Critique in General

Papers should answer the following questions

– What problem did the paper address?
– Is the problem important/interesting?
– What is the approach used to solve the problem?
– How does the paper support or justify the conclusions it reaches?
– What problems are explicitly or implicitly left as future research questions?
Specific Problem: How can we apply loop interchange, skewing, and reversal to generate
– a loop that is legally tilable (i.e. fully permutable)
– a loop that when tiled will result in improved data locality

Original Loop
```
do j = 1, 2*n by 2
  do i = 1, m
    A(j) = A(j) + B(i)
  enddo
endo
```
Is the problem important/interesting?

Performance improvements due to tiling can be significant

- For matrix multiply, 2.75 speedup on a single processor
- Enables better scaling on parallel processors

Tiling Loops More Complex than MM

- requires making loops permutable
- goal is to make loops exhibiting reuse permutable

Figure 1: Performance of 500 × 500 double precision matrix multiplication on the SGI 4D/380. Cache tiles are 64 × 64 iterations and register tiles are 4 × 2.
What is the approach used to solve the problem?

Create a unimodular transformation that results in loops experiencing reuse becoming fully permutable and therefore tilable

Formulation of the data locality optimization problem (the specific problem their approach solves)
- For a given iteration space with
 - a set of dependence vectors, and
 - uniformly generate reference sets
the data locality optimization problem is to find the unimodular and/or tiling transform, subject to data dependences, that minimizes the number of memory accesses per iteration.

The problem is hard
- Just finding a legal unimodular transformation is exponential in the number of loops.
Heuristic for solving data locality optimization problem

Perform reuse analysis to determine innermost tile (i.e., localized vector space)
 – only consider elementary vectors as reuse vectors

For the localized vector space, break problem into all possible tiling combinations

Apply SRP algorithm in an attempt to make loops fully permutable
 – (S)kew transformations, (R)eversal transformation, and (P)ermutation
 – Definitely works when dependences are lexicographically positive distance vectors
 – $O(n^2d)$ where n is the loop nest depth and d is the number of dependence vectors
How does the paper support the conclusion it reaches?

“The algorithm ... is successful in optimizing codes such as matrix multiplication, successive over-relaxation (SOR), LU decomposition without pivoting, and Givens QR factorization”.

– They implement their algorithm in the SUIF compiler
– They have the compiler generate serial and parallel code for the SGI 4D/380
– They perform some optimization by hand
 – register allocation of array elements
 – loop invariant code motion
 – unrolling the innermost loop
– Benchmarks and parameters
 – LU kernel on 1, 4, and 8 processors using a matrix of size 500x500 and tile sizes of 32x32 and 64x64
 – SOR kernel on 500x500 matrix, 30 time steps
SOR Transformations

Variations of 2D (data) SOR
- wavefront version, theoretically great parallelism, but bad locality
- “2D tile”, better than wavefront, doesn’t exploit temporal reuse
- “3D tile” version, best performance

Picture for 1D (data) SOR
What problems are left as future research?

Explicitly stated future work
– The authors suggest that their SRP algorithm may have its performance improved with a branch and bound formulation.

Questions left unanswered in the paper
– How should the tile sizes be selected?
– After performing tiling, what algorithm should be used to determine further transformations for improved performance?
 – They perform inner loop unrolling and other, but do not perform a model for which transformations should be performed and what their parameters should be.
– What is the relationship between storage reuse, data locality, and parallelism?