Frequently asked questions from the previous class survey

- BitTorrent
 - Why download the rarest chunk first?
 - Is the partial torrent returned to different peers different?
 - Is the data structure need by tracker stored in memory?
 - Who maintains the tracker servers?
 - Popcorn Time
 - Sequential downloading
 - UTP or TCP: µTorrent
 - Pastry assignment
 - IDs for content and nodes: Should be specifiable

Outsourcing allows smaller services to benefit from mega services

- Automate the routine
 - Harness economies-of-scale

- Companies outsource payroll, insurance, web presence, and e-mail
 - Universities have tied up with Google for e-mail for instance

Outsourcing works under certain conditions ...

- Should be a service business
 - And computing should be CENTRAL
 - To operating and supporting the customer

- Application should be nearly identical across companies
 - Payroll, E-mail
 - Exception not the rule
Distributed computing does not have an outsourcing or business model

- Designed for computer-to-computer interactions
 - No eyeballs involved
- Need new business models to make profit
 - Enter the notion of leasing in modern Cloud systems

Baseline hardware parameters

- 2 GHz CPU with 8 GB RAM = $2000
- 200 GB disk = $200
- 100 access/sec
- 50 MB/sec transfer speed
- 1 Gbps Ethernet port-pair = $200
- 1 Mbps WAN link = $50/month

Note: Numbers are circa 2003

1 dollar buys you

- 1 GB transfer over WAN
- 1 day of CPU time ($1000/3)
- 1 GB disk space for 3 years
- 4 GB RAM for a day
- 10 M database accesses
- 10 TB of sequential disk access
- 10 TB of LAN Bandwidth (bulk)
- 10 KWhrs = 4 days of computer time

Caveats

- Beowulf clusters have different networking economics
 - Networking costs comparable to disk bandwidth
 - 10,000 times cheaper than price of Internet transports
 - Do not confuse with Internet-scale computations
- If telecom costs drop faster than Moore’s law … analysis fails
 - Over past 40 years telecom costs have fallen the slowest

The right abstraction level for Internet Distributed Computing

- Disk Block? No
- File? No
- Database? No
- Applications? Yes
 - BLAST search
 - Google search
 - Send/GET e-mail

Computing on-demand enable mobile applications

- Tasks are mobile
- Computing is dynamically provisioned
- Write-once-run-anywhere (WORA)
 - Java
 - COBOL
A computation task has 4 demands that must be met

① Networking
 Questions & Answers

② Computation
 Transform data/info into new information

③ Database/File Access
 Access to reference information

④ Database/File Storage
 Long term storage

Ratios of demands and the relative costs is pivotal

① OK to send GB of data if it saves years of computation

② NOT OK to send KB of data over network
 If computation can be performed locally

Ideal mobile computation task

① Stateless
 No disk access

② Tiny network input or output

③ Huge computational demand

④ Examples:
 - Cryptographic search
 (encrypted text, clear text, key search range)
 - Monte Carlo simulation
 - SETI@HOME

Why SETI@HOME is a good deal

① Sends out 10^9 jobs: each is 300 KB

② Network costs
 - 1 GB = $1
 - 1 MB = 10^-3 $
 - 100 KB = 10^-4 $

③ Compute Cost = 0.5$

④ Compute Cost/Network Cost = 0.5/(3*10^-4)
 Approx: 1600:1

How do you move a Terabyte?

<table>
<thead>
<tr>
<th>Speed</th>
<th>Rent/month</th>
<th>$/Mbps</th>
<th>$/TB</th>
<th>Time/TB</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>40</td>
<td>1,000</td>
<td>3,086</td>
<td>6 years</td>
</tr>
</tbody>
</table>

Source: TeraScale SneakerNet, Microsoft Research, Jim Gray, Chang, Tom Bailey; Alex Szalay; Jan Vandenberg

Consequences

① The cheapest & fastest way to move Terabytes cross country is sneakernet
 - 24 hours = 4 MB/s
 - $50 shipping vs $1000 WAN cost

② Sending 10PB CERN data via network is silly:
 ① Buy disk bricks in Geneva
 ② Fill them
 ③ Ship them

TeraScale SneakerNet: Using Inexpensive Disks for Backup, Archiving, and Data Exchange
Jim Gray, Wyman Chong, Tom Bailey; Alex Szalay; Jan Vandenberg
Web Data processing systems

- Network or State intensive
- 100 MB FTP task = 10 cents
- 99% network cost
- HTML webpage access
 - 10^-6 dollars, 88% network cost
- Hotmail
 - 10^-3 dollars; some balance in CPU and network costs

Why Napster was a good deal

- 5 MB song
 - Network cost = 5 x 10^-2 $ ≈ ½ a penny
 - Both sender and receiver could afford it
- Yahoo! Serving web pages
 - 10^-2 $ in advertising revenue per page
 - 10^-4 $ total cost in serving web page
 - ROI: 100:1

Computations that are not economically viable

- Data loading and data scanning tasks
 - CPU-intensive, but also data intensive.
 - Therefore not economically viable as mobile applications.

Break even point for mobile computation tasks

- 10 Tops & 1 GB of networking both cost $1
- Break-even point
 - 10,000 instructions per byte of network traffic
 - 1 minute of processing per MB of network traffic
- Outsourcing becomes attractive when the cost-benefit ratio involves
 - 30,000 instructions per byte

The type of network also matters

- LAN is 10,000 cheaper than WAN
- Computational Fluid Dynamics
 - Simulate crack propagation in an Object
 - 100 MB input, 10 GB output, 7 CPU years
 - 10^6 instructions per byte : so good for WAN
 - But needs to executed in a tightly connected cluster
 - Cluster networking is free when compared to WAN networking

Toy Story 2

- A 200 MB image takes several CPU hours to render
- Instruction density
 - 200-600 x 10^3 instructions per byte
- Send 50 MB task; compute for 10 hours;
 - Return 200 MB image
Bioinformatics systems

- BLAST, FASTA and Smith-Waterman
 - Algorithms for matching DNA sequences against a database (GenBank or SwissProt).
 - Database sizes 50 GB
- Does it make sense to send SwissProt (40GB) to a server if processing (7220 hrs) is free?
 - Yes

Do not provision databases, provision the searches instead

- Does NOT make sense to provision databases on demand
- Set up dedicated servers instead
 - Use inexpensive servers and processors
 - Provision searches!
 - 40 GB server costs $20K
 - Can deliver complex 1-hour searches for $1

What does this imply?

- Put the computations near the data
 - Instruction density must exceed 10^5 per byte
- Combining data from multiple sites
 - PUSH processing to data sources
 - Filter the data early

MapReduce: Topics that we will cover

- Why?
- What it is and what it is not?
- The core framework and original Google paper
- Development of simple programs using Hadoop
 - The dominant MapReduce implementation

MapReduce

- It’s a framework for processing data residing on a large number of computers
- Very powerful framework
 - Superb for some problems
 - Challenging or not applicable in other classes of problems
What is MapReduce

- More a framework than a tool
- You are required to fit (some folks shoehorn it) your solution into the MapReduce framework
- MapReduce is not a feature, but rather a constraint

What does this constraint mean?

- It makes problem solving easier and harder
- Clear boundaries for what you can and cannot do
 - You actually need consider fewer options than what you are used to
 - But solving problems with constraints requires planning and a change in your thinking

But what does this get us?

- Tradeoff of being confined to the MapReduce framework?
 - Ability to process data on a large number of computers
 - But, more importantly, without having to worry about concurrency, scale, fault tolerance, and robustness

A challenge in writing MapReduce programs

- Design!
 - Good programmers can produce bad software due to poor design
 - Good programmers can produce bad MapReduce algorithms
 - Only in this case your mistakes will be amplified
 - Your job may be distributed on 100s or 1000s of machines and operating on a Petabyte of data

MapReduce: Origins of the design

- Process crawled data and logs of web requests
- Several computations work on this raw data to compute derived data
 - Inverted indices
 - Representation of graph structure of web documents
 - Pages crawled per host
 - Most frequent queries in a day …

Most computations are conceptually straightforward

- But data is large
- Computation must be scalable
 - Distributed across thousands of machines
 - To complete in a reasonable amount of time
Complexity of managing distributed computations can …

- Obscure simplicity of original computation
- Contributing factors:
 1. How to parallelize computation
 2. Distribute the data
 3. Handle failures

MapReduce was developed to cope with this complexity

- Express simple computations
- Hide messy details of
 - Parallelization
 - Data distribution
 - Fault tolerance
 - Load balancing

MapReduce

- Programming model
- Associated implementation for
 - Processing & Generating large data sets

Programming model

- Computation takes a set of input key/value pairs
- Produces a set of output key/value pairs
- Express the computation as two functions:
 - Map
 - Reduce

Map

- Takes an input pair
- Produces a set of intermediate key/value pairs

MapReduce library

- Groups all intermediate values with the same intermediate key
- Passes them to the Reduce function
Reduce function

- Accepts intermediate key I and
 - Set of values for that key
- Merge these values together to get
 - Smaller set of values

Counting number occurrences of each word in a large collection of documents

map (String key, String value)
 //key: document name
 //value: document contents
 for each word w in value
 EmitIntermediate(w, “1”)

reduce (String key, Iterator values)
 //key: a word
 //value: a list of counts
 int result = 0;
 for each v in values
 result += ParseInt(v);
 Emit(AsString(result));
 Sums together all counts emitted for a particular word

MapReduce specification object contains

- Names of
 - Input
 - Output
- Tuning parameters

Map and reduce functions have associated types drawn from different domains

map(k1, v1) → list(k2, v2)
reduce(k2, list(v2)) → list(v2)

What’s passed to-and-from user-defined functions

- Strings
- User code converts between
 - String
 - Appropriate types
Programs expressed as MapReduce computations: Distributed Grep

- **Map**
 - Emit line if it matches specified pattern
- **Reduce**
 - Just copy intermediate data to the output

Term-Vector per Host

- Summarizes important terms that occur in a set of documents `<word, frequency>`
 - **Map**
 - Emit `<hostname, term vector>`
 - For each input document
 - **Reduce function**
 - Has all per-document vectors for a given host
 - Add term vectors; discard away infrequent terms

Implementation

- Machines are commodity machines
- GFS is used to manage the data stored on the disks

IMPLEMENTATION OF THE RUNTIME

Execution Overview – Part I

- Maps distributed across multiple machines
- Automatic partitioning of data into M splits
- Splits processed concurrently on different machines

Execution Overview – Part II

- Partition intermediate key space into R pieces
 - E.g. `hash(key) mod R`
- User specified parameters
 - Partitioning function
 - Number of partitions (R)
Execution Overview

Execution Overview: Step I
The MapReduce library
- Splits input files into M pieces
 - 16-64 MB per piece
- Starts up copies of the program on a cluster of machines

Execution Overview: Step II
Program copies
- One of the copies is a Master
- There are M map tasks and R reduce tasks to assign
 - Master
 - Picks idle workers
 - Assigns each worker a map or reduce task

Execution Overview: Step III
Workers that are assigned a map task
- Read contents of their input split
- Parses <key, value> pairs out of input data
 - Pass each pair to user-defined Map function
 - Intermediate <key, value> pairs from Maps
 - Buffered in Memory

Execution Overview: Step IV
Writing to disk
- Periodically, buffered pairs are written to disk
 - These writes are partitioned
 - By the partitioning function
 - Locations of buffered pairs on local disk
 - Reported to back to Master
 - Master forwards these locations to reduce workers

Execution Overview: Step V
Reading Intermediate data
- Master notifies Reduce worker about locations
- Reduce worker reads buffered data from the local disks of Maps
 - Read all intermediate data; sort by intermediate key
 - All occurrences of same key grouped together
 - Many different keys map to the same Reduce task
Execution Overview: Step VI
Processing data at the Reduce worker

- Iterate over sorted intermediate data
- For each unique key pass
 - Key + set of intermediate values to Reduce function
- Output of Reduce function is appended
 - To output file of reduce partition

Execution Overview: Step VII
Waking up the user

- After all Map & Reduce tasks have been completed
- Control returns to the user code

Master Data Structures

- For each Map and Reduce task
 - State: (idle, in-progress, completed)
 - Worker machine identity
- For each completed Map task store
 - Location and sizes of R intermediate file regions
- Information pushed incrementally to in-progress Reduce tasks

The contents of this slide-set are based on the following references

- **JEFFREY DEAN** and **SANJAY GHEMAWAT**: MapReduce: Simplified Data Processing on Large Clusters. OSDI 2004: 137-150