Frequently asked questions from the previous class survey

- Difference between Hadoop and Spark

Topics covered in this lecture

- Hadoop
 - Phases of Map
 - Phases of Reduce
 - Examples

Hadoop

- Java-based open-source implementation of MapReduce
- Created by Doug Cutting
- Origins of the name Hadoop
 - Stuffed yellow elephant
- Includes HDFS (Hadoop Distributed File System)

Hadoop: MapReduce Dataflow

- Input HDFS
- Map
- Sort
- Reduce
- Output HDFS
In Hadoop a Map task has 4 phases
- Record reader
- Mapper
- Combiner
- Partitioner

Map task phases: Record Reader
- Translates input splits into records
- Parse data into records, but does not parse the record itself
- Passes the data to the mapper in the form of a key/value pair
- **key** in this context is positional information
- **value** is the chunk of data that comprises a record

Map task phases: Map
- **User-provided code** is executed on each key/value pair from the record reader
- This user-code produces zero or more new key/value pairs, called the intermediate pairs
 - **key** is what the data will be grouped on and **value** is the information pertinent to the analysis in the reducer
 - Choice of key/value pairs is critical and not arbitrary

Map task phases: Combiner
- **Can group data** in the map phase
- Takes the intermediate keys from the mapper and applies a user-provided method to aggregate values in the small scope of that one mapper
- Significantly reduces the amount of data that has to move over the network.
 - Sending ("hello", 3) requires fewer bytes than sending ("hello", 1) three times over the network

Combiner function
- **No guarantees on how many times** Hadoop will call this on a map output record
 - The combiner should, however, result in the same output from the reducer
- Combiners must be **commutative and associative**
 - Sometimes they are also called **distributive**
 - Commutative: Order of operands (5+2) = 2+5
 - Division and subtraction are not commutative
 - Associative: Order of operators 5 x (5x3) = (5x5)x3
 - Non-associative and non-commutative: Vector cross products and matrix multiplication (AxB)A respectively

Map task phases: Partitioner
- Takes the intermediate key/value pairs from the mapper (or combiner) and splits them up into **shards**, one shard per reducer
- Default: **key.hashCode() % (number of reducers)**
- Randomly distributes the keyspace evenly over the reducers
 - But still ensures that keys with the same value in different mappers end up at the same reducer
Map task phases: **Partitioner**

- Partitioner can be customized (e.g., for sorting)
- Changing the partitioner is rarely necessary
- The partitioned data is written to the local file system for each map and waits to be pulled by its respective reducer

In Hadoop a Reduce task has 4 phases

- Shuffle
- Sort
- Reducer
- Output format

Reduce task phases: **Shuffle and sort**

- Shuffle
 - Takes the output files written by all of the partitioners and downloads them to the local machine in which the reducer is running
- Sort
 - Individual data pieces are then sorted by key into one larger data list
 - Groups equivalent keys together so that their values can be iterated over easily in the reduce task

Reduce task phases: **Reducer**

- Takes the grouped data as input and runs a reduce function once per key grouping
- The function is passed the key and an iterator over all of the values associated with that key
 - A wide range of processing can happen in this function: data can be aggregated, filtered, and combined etc.
- Once the reduce function is done, it sends zero or more key/value pairs to the final step, the output format
- N.B.: map & reduce functions will change from job to job

Reduce task phases: **Output format**

- Translates the final key/value pair from the reduce function and writes it out to a file using a record writer
- By default:
 - Separate the key and value with a tab
 - Separates records with a newline character
- Can typically be customized to provide richer output formats
 - But in the end, the data is written out to HDFS, regardless of format
Word Count

- Word count over user-submitted comments on StackOverflow
- Content of the Text field will be retrieved and preprocessed
- Then count how many times we see each word
- Example record from this data set is:

  ```xml
  <row Id="8189677" PostId="6881722" Text="Have you looked at Hadoop?" CreationDate="2011-07-30T07:29:33.343" UserId="831878" />
  ``

  This record is the 8,189,677th comment on Stack Overflow, and is associated with post number 6,881,722, and is by user number 831,878.

**Driver class for the example**

```java
public class CommentWordCount {
 public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 Job job = new Job(conf, "StackOverflow Comment Word Count");
 job.setJarByClass(CommentWordCount.class);
 job.setMapperClass(WordCountMapper.class);
 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}
```

**Waiting for the job to complete**

- The `waitForCompletion()` method on Job submits the job and waits for it to finish
  - The single parameter is a flag indicating whether verbose output is generated. When `true` the job writes information about its progress to the console
  - The return value of the `waitForCompletion()` method is a Boolean indicating success (`true`) or failure (`false`), which we translate into the program's exit code of 0 or 1

**The Mapper class**

```java
public static class WordCountMapper extends Mapper < Object, Text, Text, IntWritable > {
 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();
 public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
 Map<String, String> parsed = MRDPUtils.transformXmlToMap(value.toString());
 String txt = parsed.get("Text");
 StringTokenizer itr = new StringTokenizer(txt);
 while (itr.hasMoreTokens()) {
 word.set(itr.nextToken());
 context.write(word, one);
 }
 }
}
```

**Some details about the Mapper class**

- Notice the type of the parent class: `Mapper<Object, Text, Text, IntWritable>`
- Maps to the types of the input key, input value, output key, and output value, respectively.
- The key of the input in this case is not useful, so we use `Object`
- Data coming in is Text (Hadoop's special String type) because we are reading the data as a line-by-line text document
- Our output key and value are Text and IntWritable because we will be using the word as the key and the count as the value
The word count Reducer

```java
public class IntSumReducer extends Reducer < Text, IntWritable, Text, IntWritable > {
 private IntWritable result = new IntWritable();
 public void reduce(Text key, Iterable < IntWritable > values, Context context)
 throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 result.set(sum);
 context.write(key, result);
 }
}
```

Reducer class

- As in the mapper, we specify the input and output types via the template parent class
- Types correspond to the same things: input key, input value, output key, and output value
- The input key and input value data types must match the output key/value types from the mapper
- The output key and output value data types must match the types that the job’s FileOutputFormat is expecting

Reducing function has a different signature from map

- Gives you an Iterator over values instead of just a single value
- We iterate over all values that have that key, instead of just one at a time
- key is very important in the reducer of pretty much every MapReduce job
- Unlike the input key in the map.

More about reducer outputs

- Anything passed to context.write will get written out to a file
- Each reducer will create one file

Another example with the StackOverflow [1/2]

- Given a list of user’s comments determine the average comment length per hour
- To calculate average we need two things:
  - Sum values that we want to average
  - Number of values that went into the sum
Another example with the StackOverflow [2/2]

- Reducer can do this very easily by iterating through each value in the set and adding to a running sum while keeping count
- But if you do this you cannot use the reducer as your combiner!
  - Calculating an average is not an associative operation
    - You cannot change the order of the operators
    - \( \text{mean}(0, 20, 10, 25, 15) = 14 \quad \text{but} \quad \text{mean}(\text{mean}(0, 20, 10), \text{mean}(25, 15)) = \text{mean}(10, 20) = 15 \)

Approach to ensuring code reuse at the combiner

- Mapper will output two columns of data
  - Count and average
- Reducer will multiply "count" field by the "average" field to add to a running count and add "count" to the running count
- Then divide the running sum with running count
  - Output the count with the calculated average

Mapper code

```java
public static class AverageMapper extends Mapper < Object, Text, IntWritable, CountAverageTuple > {
 private CountAverageTuple outCountAverage = new CountAverageTuple();
 public void map(Object key, Text value, Context context)
 throws IOException, InterruptedException {
 Map < String, String > parsed =
 MRDPUtils.transformXmlToMap(value.toString());
 String strDate = parsed.get("CreationDate");
 String text = parsed.get("Text");
 // get the hour this comment was posted in
 Date creationDate = frmt.parse(strDate);
 outHour.set(creationDate.getHours());
 outCountAverage.setCount(1);
 outCountAverage.setAverage(text.length());
 // write out the hour with the comment length
 context.write(outHour, outCountAverage);
 }
}
```

Reducer code

```java
public class AverageReducer extends Reducer < IntWritable, CountAverageTuple, IntWritable, CountAverageTuple > {
 private CountAverageTuple result = new CountAverageTuple();
 public void reduce(IntWritable key, Iterable < CountAverageTuple > values, Context context)
 throws IOException, InterruptedException {
 float sum = 0; float count = 0;
 // Iterate through all input values for this key
 for (CountAverageTuple val : values) {
 sum += val.getCount() * val.getAverage();
 count += val.getCount();
 }
 result.setCount(count);
 result.setAverage(sum / count);
 context.write(key, result);
 }
}
```

Data flow for the average example

<table>
<thead>
<tr>
<th>Input key</th>
<th>Input Value</th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 10</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hour</th>
<th>Count</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>10</td>
</tr>
</tbody>
</table>

Backup Tasks

SLIDES CREATED BY: SHRIDEEP PALLICKARA
Stragglers

- Machine that takes an unusually long time to complete a map or reduce operation
- Can slow down entire computation

How stragglers arise

- Machine with a bad disk
  - Frequent, correctable errors
  - Read performance drops from 30 MB/s to 1 MB/s
- Over scheduling
  - Many tasks executing on the same machine
  - Competition for CPU, memory, disk or network cycles
- Bug in machine initialization code
  - Processor caches may be disabled

Alleviating the problem of stragglers

- When a MapReduce operation is close to completion
- Schedule backup executions of remaining in-progress tasks
- Task completed when
  - Primary or backup finishes execution
- Significantly reduces time to complete large MapReduce operations

Skipping Bad Records

- Bugs in user code cause Map or Reduce functions to crash
  - Deterministically: On certain records
    - Fix the bug?
      - Yes, but not always feasible
  - Acceptable to ignore a few records

Skipping bad records

- Optional mode of operation
  1. Detected records that cause deterministic crashes
  2. Skip them
- Each worker installs signal handler to catch segmentation violations and bus errors

The contents of this slide-set are based on the following references

- Jeffrey Dean and Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large Clusters. OSDI 2004: 137-150