Frequently asked questions from the previous class survey

- Tab delimiters in <key, value> outputs
- `mapreduce.output.textoutputformat.separator`

Topics covered in this lecture

- Spark
 - Software stack
 - Interactive shells in Spark
 - Core Spark concepts
 - Resilient Distributed Datasets

Spark: What is it?

- Cluster computing platform
 - Designed to be fast and general purpose
- Speed
 - Often considered to be a design alternative for Apache MapReduce
 - Extends MapReduce to support more types of computations
 - Interactive queries, iterative tasks, and stream processing
- Why is speed important?
 - Difference between waiting for hours versus exploring data interactively

Spark: Influences and Innovations

- Spark has inherited parts of its API, design, and supported formats from other existing computational frameworks
 - Particularly DryadLINQ
- Spark’s internals, especially how it handles failures, differ from many traditional systems
- Spark’s ability to leverage lazy evaluation within memory computations makes it particularly unique
Where does Spark fit in the Analytics Ecosystem?

- Spark provides methods to process data in parallel that are generalizable.
- On its own, Spark is not a data storage solution.
- Performs computations on Spark JVMs that last only for the duration of a Spark application.
- Spark is used in tandem with:
 - A distributed storage system (e.g., HDFS, Cassandra, or S3)
 - A cluster manager to orchestrate the distribution of Spark applications across the cluster.

Key enabling idea in Spark

- Memory-resident data
- Spark loads data into the memory of worker nodes.
- Processing is performed on memory-resident data.

A look at the memory hierarchy

<table>
<thead>
<tr>
<th>Item</th>
<th>Time (ns)</th>
<th>Scaled time in human terms (2 billion times slower)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor cycle</td>
<td>0.5 ns (2 GHz)</td>
<td>1 second</td>
</tr>
<tr>
<td>Cache access</td>
<td>1 ns (1 GHz)</td>
<td>2 seconds</td>
</tr>
<tr>
<td>Memory access</td>
<td>70 ns</td>
<td>140 seconds</td>
</tr>
<tr>
<td>Context switch</td>
<td>5,000 ns (5 µs)</td>
<td>167 minutes</td>
</tr>
<tr>
<td>Disk access</td>
<td>7,000,000 ns (7 ms)</td>
<td>63 days</td>
</tr>
<tr>
<td>Quantum</td>
<td>100,000,000,000 ns (100 ms)</td>
<td>62 years</td>
</tr>
</tbody>
</table>

Spark covers a wide range of workloads

- Batch applications
- Iterative algorithms
- Queries
- Stream processing
- This has previously required multiple, independent tools.

APIs

- Java, Python, Scala, and SQL
- Integrates well with other tools.
 - Can run in Hadoop clusters.
 - Access Hadoop data sources, including Cassandra.

At its core, Spark is a **computational engine**

- Spark is responsible for several aspects of applications that comprise:
 - Many tasks across many machines (compute clusters).
- Responsibilities include:
 1. Scheduling
 2. Distributions
 3. Monitoring
THE SPARK SOFTWARE STACK

Spark Core
- Basic functionality of Spark
- Task scheduling, memory management, fault recovery, and interacting with storage systems
- Also, the API that defines Resilient Distributed Datasets (RDDs)
 - Spark's main programming abstraction
 - Represents collection of data items dispersed across many compute nodes
 - Can be manipulated concurrently (parallel)

Spark SQL
- Package for working with structured data
- Allows querying data using SQL and HQL (Hive Query Language)
 - Data sources: Hive tables, Parquet, and JSON
- Allows intermixing queries with programmatic data manipulations support by RDDs
 - Using Scala, Java, and Python

Semi-structured data and Spark SQL
- Spark SQL defines an interface for a semi-structured data type, called DataFrames
 - And as of Spark 1.6, a semi-structured, typed version of RDDs called Datasets
- Spark SQL is a very important component for Spark performance
- Much of what can be accomplished with Spark Core can be done by leveraging Spark SQL.

Spark Streaming
- Enables processing of live streams of data from sources such as:
 - Logfiles generated by production webservers
 - Messages containing web service status updates
- Uses the scheduling of the Spark Core for streaming analytics on minibatches of data
- Has a number of unique considerations, such as the window sizes used for batches
MLlib

- MLlib is a package of machine learning and statistics algorithms written with Spark
- Algorithms include:
 - Clustering, classification, regression, clustering, and collaborative filtering
 - Low-level primitives
 - Generic gradient descent optimization algorithm
 - Alternatives?
 - Mahout, sci-kit learn, VW, WEKA, and R among others

What about Spark ML?

- Still in the early stages, and has only existed since Spark 1.2
- Spark ML provides a higher-level API than MLlib
 - Goal is to allow users to more easily create practical machine learning pipelines
 - Spark MLlib is primarily built on top of RDDs and uses functions from Spark Core, while ML is built on top of Spark SQL DataFrames
 - Eventually the Spark community plans to move over to ML and deprecate MLlib

Graph X

- Library for manipulating graphs
- Graph-parallel computations
- Extends Spark RDD API
 - Create a directed graph, with arbitrary properties attached to each vertex and edge

Cluster Managers

- Spark runs over a variety of cluster managers
- These include:
 - Hadoop YARN
 - Apache Mesos
 - Standalone Scheduler
 - Included within Spark

Storage Layers for Spark

- Spark can create distributed datasets from any file stored in HDFS
- Plus, other storage systems supported by the Hadoop API
 - Amazon S3, Cassandra, Hive, HBase, etc.
Spark Shells

- Interactive (Python and Scala)
- Similar to shells like Bash or Windows command prompt
- Ad hoc data analysis
- Traditional shells manipulate data using disk and memory on a single machine
- Spark shells allow interaction with data that is distributed across many machines
- Spark manages complexity of distributing processing

Spark Shells

Several software were designed to run on the Java Virtual Machine

- Languages that compile to run on the JVM and can interact with Java software packages but are not actually Java
- There are a number of non-Java JVM languages
 - The two most popular ones used in real-time application development: Scala and Clojure

Spark Shells

Scala

- Has spent most of its life as an academic language
 - Still largely developed at universities
 - Has a rich standard library that has made it appealing to developers of high-performance server applications
- Like Java, Scala is a strongly typed object-oriented language
 - Includes many features from functional programming languages that are not in standard Java
 - Interestingly, Java 8 incorporate several of the more useful features of Scala and other functional languages

What is functional programming?

- When a method is compiled by Java, it is converted to instructions called byte code and ...
 - Then largely disappears from the Java environment
 - Except when it is called by other methods
- In a functional language, functions are treated the same way as data
 - Can be stored in objects similar to integers or strings, returned from functions, and passed to other functions

What about Clojure?

- Based on Lisp
 - Javascript
 - Name was a marketing gimmick
 - Closer to Clojure and Scala than it is to Java

What about Clojure?

Several software were designed to run on the Java Virtual Machine

- Languages that compile to run on the JVM and can interact with Java software packages but are not actually Java
- There are a number of non-Java JVM languages
 - The two most popular ones used in real-time application development: Scala and Clojure

Several software were designed to run on the Java Virtual Machine

- Languages that compile to run on the JVM and can interact with Java software packages but are not actually Java
- There are a number of non-Java JVM languages
 - The two most popular ones used in real-time application development: Scala and Clojure

What is functional programming?

- When a method is compiled by Java, it is converted to instructions called byte code and ...
 - Then largely disappears from the Java environment
 - Except when it is called by other methods
- In a functional language, functions are treated the same way as data
 - Can be stored in objects similar to integers or strings, returned from functions, and passed to other functions

What about Clojure?

- Based on Lisp
 - Javascript
 - Name was a marketing gimmick
 - Closer to Clojure and Scala than it is to Java

What about Clojure?
Core Spark Concepts

- Drivers
- SparkContext
- Executors
- RDDs

Spark in a nutshell

- Spark allows users to write a program for the driver (or master node) on a cluster computing system that can perform operations on data in parallel
- Spark represents large datasets as RDDs which are stored in the executors (or worker nodes)
- The objects that comprise RDDs are called partitions and may be (but do not need to be) computed on different nodes of a distributed system
- The Spark cluster manager handles starting and distributing the Spark executors across a distributed system

Drivers

- Every Spark application consists of a driver program
- Driver launches various parallel operations on the cluster

SparkContext

- Driver programs access Spark through a SparkContext object
- Represents a connection to a computing cluster
- Within the shell
 - Created as the variable sc
 - You can even print-out sc to see the the type
- Once you have a SparkContext, you can use it to build RDDs
- And then run operations on the data …

Executors

- Driver programs manage a number of nodes, called executors
- Executors are responsible for running operations
- For example:
 - If we were running a count() operation on a cluster
 - Different machines might count lines in different ranges of the file

Components for distributed execution in Spark
Lot of Spark’s API revolves around passing functions to its operators

def hasPython(line):
 return "Python" in line

pythonLines = lines.filter(hasPython)

Also known as the lambda or => syntax

JavaRDD<String> pythonLines = lines.filter(
 line => line.contains("Python")
);

RESILIENT DISTRIBUTED DATASET [RDD]

Resilient Distributed Dataset (RDD)

- RDD is an immutable, distributed collection of objects
 - Lazyly evaluated, statically typed
 - Each RDD is split into multiple partitions
 - Maybe computed on different nodes in the cluster
 - Can contain any type of Java, Scala, or Python objects
 - Including user-defined classes

RDDs support …

- A number of predefined “coarse-grained” transformations (functions that are applied to the entire dataset),
 - Such as map, join, and reduce to manipulate the distributed datasets
- I/O functionality to read and write data between the distributed storage system and the Spark JVMs

RDDs: memory residency and immutability implications

- Spark can keep an RDD loaded in-memory on the executor nodes throughout the life of a Spark application for faster access in repeated computations
- RDDs are immutable, so transforming an RDD returns a new RDD rather than the existing one
- Cross-cutting implications?
 - Lazy evaluation, in-memory storage, and immutability allows Spark to be easy-to-use, fault-tolerant, scalable, and efficient
Creation of RDDs

1. Loading an external dataset
2. Distributing a collection of objects via the driver program

```python
>>> lines = sc.textFile("README.md")
```

Once created, RDDs offer two types of operations

- **Transformations**
 - Construct a new RDD from a previous one
 - E.g.: Filtering data that matches a predicate

- **Actions**
 - Compute a result based on an RDD
 - Return result to the driver program or save it in external storage system (HDFS)

Some more about RDDs

- Although you can define new RDDs anytime
 - Spark computes them in a lazy fashion
 - The first time they are used in an action
 - Loading lazily allows transformations to be performed before the action

Lazy loading allows Spark to see the whole chain of transformations

- Allows it to compute just the data needed for the result
- Example:
  ```python
  lines = sc.textFile("README.md")
  pythonLines= lines.filter(lambda line: "Python" in line)
  ```
- If Spark were to load and store all lines in the file, as soon as we wrote `lines=sc.textFile()`?
 - Would waste a lot of storage space, since we immediately filter out a lot of lines

RDD and actions

- RDDs are recomputed (by default) every time you run an action on them
- If you wanted to reuse an RDD
 - Ask Spark to persist it using RDD.persist()
 - After computing it the first time, Spark will store RDD contents in memory (partitioned across cluster machines)
 - Persisted RDD is used in future actions

Every Spark program and shell works as follows

1. Create some input RDD from external data
2. Transform them to define new RDDs using transformations like `filter()`
3. Ask Spark to persist() any intermediate RDDs that needs to be reused
4. Launch actions such as `count()`, etc. to kickoff a parallel computation
 - Computing is optimized and executed by Spark
The contents of this slide-set are based on the following references:

- *Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data*. Byron Ellis. Wiley. [Chapter 2]