Frequently asked questions from the previous class survey

- Why use Hadoop if Spark is so much faster?

Topics covered in this lecture

- Spark Resilient Distributed Datasets
 - Transformations
 - Dependencies
 - Actions
 - Examples

A simple Scala word count example

```scala
def simpleWordCount(rdd: RDD[String]): RDD[(String, Int)] = {
  val words = rdd.flatMap(_.split(" "))
  val wordPairs = words.map((_, 1))
  val wordCounts = wordPairs.reduceByKey(_ + _)
  wordCounts
}
```

A CLOSER LOOK AT RDD OPERATIONS

RDDs support two types of operations

- Transformations
 - Operations that return a new RDD. E.g., `filter()`
- Actions
 - Operations that return a result to the driver program or write to storage
 - Kicks off a computation. E.g., `count()`

Distinguishing aspects

- Transformations return RDDs
- Actions return some other data type
Many transformations are element-wise
- Work on only one element at a time

Some transformations are not element-wise
- E.g.: We have a logfile, log.txt, with several messages, but we only want to select error messages

\[
\text{inputRDD} = \text{sc.textFile}(\text{"log.txt"})
\]
\[
\text{errorsRDD} = \text{inputRDD.filter}(\lambda x: \text{"error" in x})
\]

In our previous example...
- filter does not mutate inputRDD
 - Returns a pointer to an entirely new RDD
 - inputRDD can still be reused later in the program

- We could use inputRDD to search for lines with the word "warning"
 - While we are at it, we will use another transformation, union(), to print number of lines that contained either
 \[
 \text{errorsRDD} = \text{inputRDD.filter}(\lambda x: \text{"error" in x})
 \]
 \[
 \text{warningsRDD} = \text{inputRDD.filter}(\lambda x: \text{"warning" in x})
 \]
 \[
 \text{badlinesRDD} = \text{errorsRDD.union(warningsRDD)}
 \]

RDD lineage graphs
- As new RDDs are derived from each other using transformations, Spark tracks dependencies
- Lineage graph
 - Uses lineage graph to
 - Compute each RDD on demand
 - Recover lost data if part of persistent RDD is lost

In our previous example...
- Note how union() is different from filter()
 - Operates on 2 RDDs instead of one
 - Transformations can actually operate on any number of RDDs

Actions
- We can create RDDs from each other using transformations
- At some point, we need to actually do something with the dataset
 - Actions
 - Forces evaluations of the transformations required for the RDD they were called on
Each Spark program must contain an action

- Actions either:
 - Bring information back to the driver or
 - Write the data to stable storage
- Actions are what force evaluation of a Spark program
- Persist calls also force evaluation, but usually do not mark the end of a Spark job
- Actions that bring data back to the driver include `collect`, `count`, `collectAsMap`, `sample`, `reduce`, and `take`.

Let's try to print information about `badlinesRDD`

```scala
println(s"Input had \${badLinesRDD.count()} concerning lines")
println("here are 10 examples:")
for(line <- badLinesRDD.take(10))
  println(line)
```

RDDs also have a collect to retrieve the entire RDD

- Useful if program filters RDD to a very small size and you want to deal locally
 - Your entire dataset must fit in memory on a single machine to use `collect()` on it
 - Should NOT be used on large datasets
- In most cases, RDDs cannot be `collect()`ed to the driver
- Common to write data out to a distributed storage system … HDFS or S3

A caveat about actions and scaling

- Some of these actions do not scale well, since they can cause memory errors in the driver
- In general, it is best to use actions like `take`, `count`, and `reduce`, which bring back a fixed amount of data to the driver, rather than `collect` or `sample`.

Lazy Evaluation

- Transformations on RDDs are lazily evaluated
 - Spark will not begin to execute until it sees an action
- Uses this to reduce the number of passes it has to take over data by grouping operations together
- What does this mean?
 - When you call a transformation on an RDD (for e.g. `map`) the operation is not immediately performed
 - Spark internally records metadata that operation is requested

How you should think of RDDs

- Rather than thinking of it as containing specific data
 - Best to think of it as containing instructions on how to compute the data that we build through transformations
- Loading data into a RDD is lazily evaluated just as transformations are
Wide and Narrow Transformations

October 3, 2017

WIDE AND NARROW TRANSFORMATIONS

October 3, 2017

Transformations and Dependencies

- Two categories of dependencies
 - Narrow
 - Each partition of the parent RDD is used by at most one partition of the child RDD
 - Wide
 - Multiple child RDD partitions may depend on a single parent RDD partition

The narrow versus wide distinction has significant implications for the way Spark evaluates a transformation and, consequently, for its performance.

Narrow Transformations

- Narrow transformations are those in which each partition in the child RDD has simple, finite dependencies on partitions in the parent RDD
- Can be determined at design time, irrespective of the values of the records in the parent partitions
- Partitions in narrow transformations can either depend on:
 - One parent (such as in the map operator), or
 - A unique subset of the parent partitions that is known at design time (coalesce)
- Narrow transformations can be executed on an arbitrary subset of the data without any information about the other partitions.

Wide Transformations

- Transformations with wide dependencies cannot be executed on arbitrary rows
- Require the data to be partitioned in a particular way, e.g., according the value of their key
- In sort, for example, records have to be partitioned so that keys in the same range are on the same partition
- Transformations with wide dependencies include sort, reduceByKey, groupByKey, join, and anything that calls the rePartition function

Dependencies between partitions for narrow transformations

Dependencies between partitions for wide transformations
COMMON TRANSFORMATIONS AND ACTIONS

Element-wise transformations: **filter()**
- Takes in a function and returns an RDD that only has elements that pass the filter() function

Element-wise transformations: **map()**
- Takes in a function and applies it to each element in the RDD
- Result of the function is the new value of each element in the resulting RDD

Things that can be done with **map()**
- Fetch website associated with each URL in collection to just squaring numbers
- map()’s return type does not have to be the same as its input type
- Multiple output elements for each input element?
 - Use **flatMap()**

Difference between **map()** and **flatMap()**
- RDD1.map(tokenize)
- RDD1.flatMap(tokenize)

Psuedo set operations
- RDDS support many of the operations of mathematical sets such as union, intersection, etc.
- Even when the RDDS themselves are not properly sets
Some simple set operations

- **RDD1**: \{coffee, coffee, panda, monkey, tea\}
- **RDD2**: \{coffee, monkey, kitty\}

- **RDD1.distinct()**
 \{coffee, monkey, panda, tea\}

- **RDD1.union(RDD2)**
 \{coffee, coffee, coffee, panda, monkey, monkey, tea, kitty\}

- **RDD1.intersection(RDD2)**
 \{coffee, monkey\}

- **RDD1.subtract(RDD2)**
 \{panda, tea\}

Cartesian product between two RDDs

- **RDD1**: \{User1, User2, User3\}
- **RDD2**: \{Venue("Betabrand"), Venue("Asha Tree House"), Venue("Ritual")\}

- **RDD1.cartesian(RDD2)**
 \{(User1, Venue("Betabrand")), (User1, Venue("Asha Tree House")), (User1, Venue("Ritual")), (User2, Venue("Betabrand")), (User2, Venue("Asha Tree House")), (User2, Venue("Ritual")), (User3, Venue("Betabrand")), (User3, Venue("Asha Tree House")), (User3, Venue("Ritual"))\}

Common Actions

- **reduce()**
 - Takes a function that operates on two elements in the RDD; returns an element of the same type
 - E.g. of such an operation? \(+ \) sums the RDD
 \[
 \text{sum} = \text{rdd}.reduce(\lambda x, y: x+y)
 \]

- **fold()**
 - Takes a function with the same signature as \(\text{reduce()} \), but also takes a “zero value” for initial call
 - “Zero value” is the identity element for initial call
 - E.g., 0 for +, 1 for *, empty list for concatenation

Both \(\text{fold()} \) and \(\text{reduce()} \) require return type to be of the same type as the RDD elements

- The \(\text{aggregate()} \) removes that constraint
 - For e.g. when computing a running average, maintain both the count so far and the number of elements

Actions on Basic RDDs

- **reduce()**
 - Takes a function that operates on two elements in the RDD; returns an element of the same type
 - E.g. of such an operation? \(+ \) sums the RDD
 \[
 \text{sum} = \text{rdd}.reduce(\lambda x, y: x+y)
 \]

- **fold()**
 - Takes a function with the same signature as \(\text{reduce()} \), but also takes a “zero value” for initial call
 - “Zero value” is the identity element for initial call
 - E.g., 0 for +, 1 for *, empty list for concatenation

Examples: Basic Actions on RDDs

- Both \(\text{fold()} \) and \(\text{reduce()} \) require return type to be of the same type as the RDD elements
 - The \(\text{aggregate()} \) removes that constraint
 - For e.g. when computing a running average, maintain both the count so far and the number of elements
Examples: Basic actions on RDDs [1/7]
- Our RDD contains {1, 2, 3, 3}
- **collect()**
 - Return all elements from the RDD
 - Invocation: `rdd.collect()`
 - Result: `{1, 2, 3, 3}`

Examples: Basic actions on RDDs [2/7]
- Our RDD contains {1, 2, 3, 3}
- **count()**
 - Number of elements in the RDD
 - Invocation: `rdd.count()`
 - Result: 4

Examples: Basic actions on RDDs [3/7]
- Our RDD contains {1, 2, 3, 3}
- **countByValue()**
 - Number of times each element occurs in the RDD
 - Invocation: `rdd.countByValue()`
 - Result: `{(1,1), (2,1), (3,2)}`

Examples: Basic actions on RDDs [4/7]
- Our RDD contains {1, 2, 3, 3}
- **take(num)**
 - Return num elements from the RDD
 - Invocation: `rdd.take(2)`
 - Result: `{1, 2}`

Examples: Basic actions on RDDs [5/7]
- Our RDD contains {1, 2, 3, 3}
- **reduce(func)**
 - Combine the elements of the RDD together in parallel
 - Invocation: `rdd.reduce((x,y) => x + y)`
 - Result: 9

Examples: Basic actions on RDDs [6/7]
- Our RDD contains {1, 2, 3, 3}
- **aggregate(zeroValue)(seqOp, combOp)**
 - Similar to `reduce()` but used to return a different type
 - Invocation:
 - `rdd.aggregate((0,0))`
 - `(x,y) => (x._1 + y, x._2 +1),`
 - `(x,y) => (x._1 + y._1, x._2 + y._2)`
 - Result: `(9, 4)`
Examples: Basic actions on RDDs

- Our RDD contains \(1, 2, 3, 3\)
- \texttt{foreach(func)}
 - Apply the provided function to each element of the RDD
 - Invocation: \texttt{rdd.foreach(func)}
 - Result: Nothing

Why persistence?

- Spark RDDs are lazily evaluated, and we may sometimes wish to use the same RDD multiple times.
 - Naively, Spark will recompute RDD and all of its dependencies each time we call an action on the RDD.
 - Super expensive for iterative algorithms.
- To avoid recomputing RDD multiple times?
 - Ask Spark to persist the data.
 - The nodes that compute the RDD store the partitions.

Coping with failures

- If a node that has data persisted on it fails?
 - Spark recomputes lost partitions of data when needed.
 - Also, replicate data on multiple nodes.
 - To handle node failures without slowdowns.

Persistence Levels for Spark

<table>
<thead>
<tr>
<th>Level</th>
<th>Space Used</th>
<th>CPU time</th>
<th>In Memory</th>
<th>On disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEMORY_ONLY</td>
<td>High</td>
<td>Low</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>MEMORY_ONLY_SER</td>
<td>Low</td>
<td>High</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>MEMORY_AND_DISK</td>
<td>High</td>
<td>Medium</td>
<td>Some</td>
<td>Some</td>
</tr>
<tr>
<td>MEMORY_AND_DISK_SER</td>
<td>Low</td>
<td>High</td>
<td>Some</td>
<td>Some</td>
</tr>
</tbody>
</table>

Comments:
- Spills to disk if there is too much data to fit in memory.
- Some serialized representations in memory.

What if you attempt to cache too much data to fit in memory?

- Spark will \texttt{evict old partitions} using a Least Recently Used Cache policy.
 - For memory only storage partitions, it will be recomputed the next time they are accessed.
 - For memory_and_disk ones? Write them out to disk.
- RDDs also come with a method, \texttt{unpersist()}
 - Manually remove data elements from the cache.
The contents of this slide-set are based on the following references:

- *Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data*. Byron Ellis. Wiley. (Chapter 2)