Frequently asked questions from the previous class survey

- Gossips and cloud settings: why?
- Akamai
- Any bounds on server synchronizations
- How much content is Akamized?
- Spark
- Communications between tasks? Task failures?
- RDD replica? Immutable once in the RAM?
- Is it ever backed by disk?
- What if the RDD size exceed memory capacity?
- Data locality with Cassandra?
- Join()
- What does it excel at?

Topics covered in this lecture

- Resilient Distributed Datasets
- Common Transformations and Actions

Components for distributed execution in Spark

Lot of Spark's API revolves around passing functions to its operators

```python
def hasPython(line):
    return "Python" in line
pythonLines = lines.filter(hasPython)
```

```java
JavaRDD<String> pythonLines = lines.filter(new Function<String, Boolean>() {
    Boolean call(String line) {
        return line.contains("Python");
    }
});
```

Also known as the lambda or \Rightarrow syntax

```java
JavaRDD<String> pythonLines = lines.filter(line => line.contains("Python"));
```
Resilient Distributed Dataset (RDD)

- RDD is an immutable distributed collection of objects
- Each RDD is split into multiple partitions
- Maybe computed on different nodes in the cluster
- Can contain any type of Java, Scala, or Python objects
 - Including user-defined classes

Creation of RDDs

1. Loading an external dataset
2. Distributing a collection of objects via the driver program

```python
>>> lines = sc.textFile("README.md")
```

Once created, RDDs offer two types of operations

- **Transformations**
 - Construct a new RDD from a previous one
 - E.g.: Filtering data that matches a predicate
- **Actions**
 - Compute a result based on an RDD
 - Return result to the driver program or save it in external storage system (HDFS)

Some more about RDDs

- Although you can define new RDDs anytime
 - Spark computes them in a lazy fashion
- When?
 - The first time they are used in an action
- Loading lazily allows transformations to be performed before the action

Lazy loading allows Spark to see the whole chain of transformations

- Allows it to compute just the data needed for the result
- Example:
  ```python
  lines = sc.textFile("README.md")
  pythonLines = lines.filter(lambda line: "Python" in line)
  ```
- If Spark were to load and store all lines in the file, as soon as we wrote `lines = sc.textFile()`?
 - Would waste a lot of storage space, since we immediately filter out a lot of lines
RDD and actions

- RDDs are recomputed (by default) every time you run an action on them.
- If you wanted to reuse an RDD:
 - Ask Spark to persist it using RDD.persist().
 - After computing it the first time, Spark will store RDD contents in memory (partitioned across cluster machines).
 - Persisted RDD is used in future actions.

Every Spark program and shell works as follows:

1. **Create** some input RDD from external data.
2. **Transform** them to define new RDDs using transformations like `filter()`.
3. Ask Spark to persist() any intermediate RDDs that need to be reused.
4. **Launch actions** such as `count()`, etc. to kickoff a parallel computation.

Computing is optimized and executed by Spark.

A CLOSER LOOK AT RDD OPERATIONS

RDDs support two types of operations:

- **Transformations**
 - Operations that return a new RDD. E.g.: `filter()`
- **Actions**
 - Operations that return a result to the driver program or write to storage.
 - Kicks of a computation. E.g.: `count()`
- Distinguishing aspect:
 - Transformations return RDDs
 - Actions return some other data type.

Transformations

- Many transformations are element-wise
 - Work on only one element at a time.
- Some transformations are not element-wise
 - E.g.: We have a logfile, `log.txt`, with several messages, but we only want to select error messages.

```scala
inputRDD = sc.textFile("log.txt")
errorsRDD = inputRDD.filter(lambda x: "error" in x)
```

In our previous example...

- `filter` does not mutate `inputRDD`
 - Returns a pointer to an entirely new RDD.
 - `inputRDD` can still be reused later in the program.
- We could use `inputRDD` to search for lines with the word “warning”.
 - While we are at it, we will use another transformation, `union()`, to print number of lines that contained either errors or warnings.

```scala
errorsRDD = inputRDD.filter(lambda x: "error" in x)
warningsRDD = inputRDD.filter(lambda x: "warning" in x)
badlinesRDD = errorsRDD.union(warningsRDD)
```
In our previous example

- Note how `union()` is different from `filter()`
- Operates on 2 RDDs instead of one
- Transformations can actually operate on any number of RDDs

RDD Lineage graphs

- As new RDDs are derived from each other using transformations, Spark tracks dependencies
- Lineage graph
- Uses lineage graph to
 - Compute each RDD on demand
 - Recover lost data if part of persistent RDD is lost

RDD lineage graph for our example

```
inputRDD
  filter
  errorsRDD
  warningsRDD
  filter

union
badLinesRDD
```

Actions

- We can create RDDs from each other using transformations
- At some point, we need to actually do something with the dataset
- Actions
- Forces evaluations of the transformations required for the RDD they were called on

Let’s try to print information about `badLinesRDD`

```python
print "Input had " + badLinesRDD.count() + " concerning lines"
print "here are 10 examples:
for line in badLinesRDD.take(10)
    print line
```

RDDs also have a `collect` to retrieve the entire RDD

- Useful if program filters RDD to a very small size and you want to deal locally
- Your entire dataset must fit in memory on a single machine to use `collect()` on it
 - Should NOT be used on large datasets
- In most cases, RDDs cannot be `collect()`ed to the driver
- Common to write data out to a distributed storage system … HDFS or S3
Lazy Evaluation

- Transformations on RDDS are lazily evaluated
 - Spark will not begin to execute until it sees an action
- Uses this to reduce the number of passes it has to take over data by grouping operations together
- What does this mean?
 - When you call a transformation on an RDD (for e.g. map) the operation is not immediately performed
 - Spark internally records metadata that operation is requested

How you should think of RDDs

- Rather than thinking of it as containing specific data
 - Best to think of it as containing instructions on how to compute the data that we build through transformations
- Loading data into a RDD is lazily evaluated just as transformations are

Common Transformations and Actions

Element-wise transformations: filter()

- Takes in a function and returns an RDD that only has elements that pass the filter() function

Element-wise transformations: map()

- Takes in a function and applies it to each element in the RDD
- Result of the function is the new value of each element in the resulting RDD

Things that can be done with map()
Difference between map and flatMap

- RDD1.map(tokenize) → mappedRDD
 - {"coffee panda", "happy panda", "happiest panda party"}

- RDD1.flatMap(tokenize) → flatMappedRDD
 - {"coffee", "panda", "happy", "panda", "happiest", "panda", "party"}

Psuedo set operations

- RDDs support many of the operations of mathematical sets such as union, intersection, etc.
- Even when the RDDs themselves are not properly sets

Some simple set operations

- RDD1: {coffee, coffee, panda, monkey, tea}
- RDD2: {coffee, monkey, kitty}

- RDD1.distinct() → {coffee, monkey, panda, tea}
- RDD1.union(RDD2) → {coffee, coffee, coffee, panda, monkey, monkey, tea, kitty}
- RDD1.intersection(RDD2) → {coffee, monkey}
- RDD1.subtract(RDD2) → {panda, tea}

Cartesian product between two RDDs

- RDD1: {User1, User2, User3}
- RDD2: {Venue("Betabrand"), Venue("Asha Tree House"), Venue("Ritual")}

- RDD1.cartesian(RDD2) →
 - {(User1, Venue("Betabrand")), (User1, Venue("Asha Tree House")), (User1, Venue("Ritual")),
 (User2, Venue("Betabrand")), (User2, Venue("Asha Tree House")), (User2, Venue("Ritual")),
 (User3, Venue("Betabrand")), (User3, Venue("Asha Tree House")), (User3, Venue("Ritual"))}

Actions on Basic RDDs

- reduce() takes a function that operates on two elements in the RDD; returns an element of the same type
 - E.g. of such an operation? + sums the RDD
 - sum = rdd.reduce(lambda x, y: x + y)

- fold() takes a function with the same signature as reduce(), but also takes a “zero value” for initial call
 - “Zero value” is the identity element for initial call
 - E.g., 0 for +, 1 for *, empty list for concatenation
Both `fold()` and `reduce()` require return type of same type as the RDD elements

- The `aggregate()` removes that constraint
 - For e.g. when computing a running average, maintain both the count so far and the number of elements

Examples: Basic actions on RDDs

- Our RDD contains `{1, 2, 3, 3}`
- `collect()`
 - Return all elements from the RDD
 - Invocation: `rdd.collect()`
 - Result: `{1, 2, 3, 3}`

- Our RDD contains `{1, 2, 3, 3}`
- `count()`
 - Number of elements in the RDD
 - Invocation: `rdd.count()`
 - Result: `4`

- Our RDD contains `{1, 2, 3, 3}`
- `countByValue()`
 - Number of times each element occurs in the RDD
 - Invocation: `rdd.countByValue()`
 - Result: `{(1,1), (2,1), (3,2)}`

- Our RDD contains `{1, 2, 3, 3}`
- `take(num)`
 - Return `num` elements from the RDD
 - Invocation: `rdd.take(2)`
 - Result: `{1, 2}`
Examples: Basic actions on RDDs

- Our RDD contains \{1, 2, 3, 3\}
 - `reduce(func)`
 - Combine the elements of the RDD together in parallel
 - Invocation: `rdd.reduce((x,y) => x + y)`
 - Result: 9

- `aggregate(zeroValue)(seqOp, combOp)`
 - Similar to `reduce()` but used to return a different type
 - Invocation:
 - `rdd.aggregate((x,y) => (x._1 + y, x._2 +1), (x,y) => (x._1 + y._1, x._2 + y._2))`
 - Result: (9, 4)

- `foreach(func)`
 - Apply the provided function to each element of the RDD
 - Invocation: `rdd.foreach(func)`
 - Result: Nothing

Persistence (Caching)

Why persistence?

- Spark RDDs are lazily evaluated, and we may sometimes wish to use the same RDD multiple times
- Naively, Spark will recompute RDD and all of its dependencies each time we call an action on the RDD
- Super expensive for iterative algorithms
- To avoid recomputing RDD multiple times?
 - Ask Spark to persist the data
 - The nodes that compute the RDD, store the partitions

Coping with failures

- If a node that has data persisted on it fails?
 - Spark recomputes lost partitions of data when needed
- Also, replicate data on multiple nodes
- To handle node failures without slowdowns
Persistence Levels for Spark

<table>
<thead>
<tr>
<th>Level</th>
<th>Space Used</th>
<th>CPU time</th>
<th>In Memory</th>
<th>On disk</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEMORY_ONLY</td>
<td>High</td>
<td>Low</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>MEMORY_ONLY_SER</td>
<td>Low</td>
<td>High</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>MEMORY_AND_DISK</td>
<td>High</td>
<td>Medium</td>
<td>Some</td>
<td>Some</td>
<td>Spills to disk if there is too much data to fit in memory</td>
</tr>
<tr>
<td>MEMORY_AND_DISK_SER</td>
<td>Low</td>
<td>High</td>
<td>Some</td>
<td>Some</td>
<td>Spills to disk if there is too much data to fit in memory. Stores serialized representation in memory</td>
</tr>
<tr>
<td>DISK_ONLY</td>
<td>Low</td>
<td>High</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

What if you attempt to cache too much data to fit in memory?
- Spark will **evict old partitions** using a Least Recently Used Cache policy
 - For memory only storage partitions, it will be recomputed the next time they are accessed
 - For memory_and_disk ones? Write them out to disk
- RDDs also come with a method, `unpersist()`
 - Manually remove data elements from the cache

RDDs of key/value pairs
- Key/value RDDs are commonly used to perform aggregations
 - Might have to do ETL (Extract, Transform, and Load) to get data into key/value formats
- Advanced feature to control layout of pair RDDs across nodes
 - **Partitioning**

The contents of this slide-set are based on the following references