CS557: Wireless and Mobile Networking

Christos Papadopoulos
Overview

- Wireless access and mobility
 - force us to rethink many of our assumptions
- Class focus:
 - Link layer issues (MACA/MACAW)
 - Ad-hoc mobile wireless networks (DSR)
 - Sensor networks (Directed Diffusion) (later)
Dimensions of Wireless/Mobile

- topology
 - one-hop to base-station vs. ad hoc/multi-hop
- mobility
 - fixed vs. mobile
- protocols
 - IP vs. cell phone (3G, 4G, etc.)
- constraints:
 - energy
 - radio range
 - antenna directionality
- trust
 - do you trust others to forward your data and overhear your packets?
 - Similar issues with P2P?
- app-level issues
 - even if you have connectivity, what can you do?
 - ex. it may be easier to share files with USB drives!
 - what more to do besides connect to wired Internet?
Radio Propagation Reality

- Reality is much worse
- Slow fading
 - Propagation path loss can be different in different directions
 - Caused by environmental artifacts
- Fast fading
 - Interfering multi-path transmissions

connectivity from one node to others

% pkts received to 5 dests

(data from Jerry Zhao, ISI, 2002)

time since start (in hours)
MACAW: A Media Access Protocol for Wireless LANs

Bharghavan94a
The Physical Layer

• Based on MACA
 – Multiple Access Collision Avoidance protocol

• First study a simple model
 – radio transmission range defined by cell
 – a receiver within range can hear transmission

• Interactions of multiple transmitters at receiver
 – Collision: if receiver is within range of two transmitters, but can’t extract either
 – Capture: one signal stronger than other
 – Interference: in-range of one transmitter, out of range of another, but can’t extract signal

• Other, more complex environmental interactions
 – multi-path: reflected signals interfere with original
Radio Propagation

• The physics:
 – Radios transmit at certain power
 – Received reception ability falls off as r^{-4}
 – If signal to noise ratio is high-enough, then receiver can detect transmission

• Various effects
 – Collisions
 – Capture
 – Interference

A and B transmit simultaneously
Carrier Sense Does Not Work

- Carrier Sense: before transmitting, check if carrier present
 - Works in Ethernet
- Relevant contention at the receiver, not sender
 - Wireless is different
- Can result in:
 - Hidden terminals
 - A and C transmit to B
 - Exposed terminals
 - B’s transmission inhibits C from transmitting to other stations
Better Approach

• Before sending data, send Ready-to-Send (RTS) with length of data
 – Any station that hears RTS defers transmission
• Target responds with Clear-to-Send (CTS) echoing length of data
 – CTS contains length of data
 – Any station that hears CTS defers long enough for data transmission to complete
• Deferrals solve the hidden and exposed terminal scenario in the right way
• If CTS is not heard, or RTS collides
 – retransmit RTS after binary exponential back-off
• We’re not done yet
Back-off Woes

- Backoff algorithm
 - Keep a backoff counter
 - Choose backoff uniformly between 0 and backoff counter
 - Decrease counter when CTS is heard
 - Increase when not
 - Most common: binary exponential backoff
- Can lead to unfairness
 - Like Ethernet capture
 - If one node starts off with a high value of counter, it can be starved

- Fix: Need to share congestion information
 - Backoff copy
- Optimization: Avoid oscillations in backoff counter
 - Increase multiplicatively
 - Decrease additively
 - Improves throughput
Adding Reliability

- Wireless losses possible due to noise or collisions
- Add an ACK after DATA transmission
 - if ACK not received, sender restarts RTS/CTS again
 - if ACK was lost, receiver sends ACK instead of CTS
 - Back-off counter increased if ACK not received, decreased otherwise
Fairness with RTS/CTS

- An exposed terminal may not be able to compete effectively
 - doesn’t know if RTS/CTS was successful,
 - so reduced to trying at random times
 - For example, if C tries to send while B is, its back-off timer can increase
- Fix:
 - carrier sense
 - or a DS packet (no carrier sense hardware)
- Doesn’t solve all fairness issues (see paper)
IEEE 802.11

- Standard for wireless communication
- MAC-layer uses many of the ideas discussed
 - Basic MAC is a CSMA/CA
 - Carrier-sense and transmit
 - With ACK
 - RTS/CTS exchange is optional
- Allows two modes
 - Ad-hoc
 - Infrastructure
802.11 Details

- much more complex than MACAW (because it’s real, and because it’s designed by committee)
- doesn’t include all of MACAW (less emphasis on fairness, ex. no shared backoff)

- In PCF (base station mode), quite different:
 - Base station polls nodes to see if they have traffic to send (can arbitrate transmissions)
 - Can collisions happen?

- In DCF (ad-hoc mode)
 - CSMA/CA with ACK
 - Optional RTS/CTS
 - MILD backoff
 - No DS, RRTS etc.
Ad hoc routing
Ad Hoc Routing

• Create multi-hop connectivity among set of wireless, possibly moving, nodes
• Mobile, wireless hosts act as forwarding nodes as well as end systems
• Need routing protocol to find multi-hop paths
 – Needs to be dynamic to adapt to new routes, movement
 – Interesting challenges related to interference and power limitations
Ad-Hoc Routing Requirements

• Distribution paths
 – Multi-hop paths
 – loop-free
 – minimal data transmission overhead
 – multicast?

• Self-starting and adaptive to dynamic topology

• Low consumption of memory, BW, power
 – scalable with numbers of nodes
 – localized effects of link failure
Problems with traditional approaches

• Periodic routing or LS updates require power of sender and of listening receivers

• Topology very dynamic so protocols must converge quickly to avoid black holes

• Not studied in the context of realistic radio propagation models, MAC layers and mobility patterns
Problems using DV or LS

• DV protocols may form loops
 – very wasteful in wireless: bandwidth, power
 – loop avoidance sometimes complex
• LS protocols: high storage and communication overhead
• More links in wireless (e.g., clusters) - may be redundant -> higher protocol overhead
..Problems

• Periodic updates waste power
 – tx sends portion of battery power into air
 – reception requires less power, but periodic updates prevent mobile from “sleeping”

• Convergence may be slower in conventional networks but must be fast in ad-hoc networks and be done without frequent updates
Proposed Protocols

- Destination-Sequenced Distance Vector (DSDV)
 - hbh, DV protocol w/periodic routing update broadcasts
- Temporally-Ordered Routing Algorithm (TORA)
 - on demand creation of hbh routes based on link-reversal
- Dynamic Source Routing (DSR)
 - on demand source route discovery
- Ad Hoc On-Demand Distance Vector (AODV)
 - combination of DSR and DSDV: on demand route discovery with hbh routing
• Components:
 – route discovery
 – route maintenance

• Route discovery - basic idea
 – S broadcasts route-request to D
 – each node forwards request by adding own address and re-broadcasting
 – requests propagate outward until target is found
Route Setup and Maintenance

• A request is forwarded if:
 – node is not the destination
 • If it is, it sends a route reply
 – node not already listed in recorded source route
 – node has not seen request with same sequence number

• Destination **D** copies route into a Route-reply packet and sends it back to **S**
 – Use source route from cache
 – Reverse learned source route (asymmetry)
 – Piggyback on request initiated by target

• Failure detection and recovery
 – From link level notifications
Route Cache

• All source routes learned by a node are kept in route cache
 – reduces cost of route discovery
• If intermediate node receives RR for D and has entry for D in route cache, it responds to RR and does not propagate RR further
 – Need to do this carefully, as this can cause congestion with your neighbors
• Nodes overhearing RR/RP may insert routes in cache
 – Can use information from data packets transiting the node
 – Can promiscuously listen to neighbor’s transmissions
• Scope limit on route requests for reducing discovery overhead
Other Optimizations

- Piggybacking
 - Data messages on the initial route request
 - Reply messages on the reverse route request
 - Need to do this carefully
 - … interacts with route cache optimization

- Hop short-cuts
 - If a node notices that the packet has skipped a hop, it can send an unsolicited route reply

- Optimized error handling
 - Rate limiting requests
 - Snooping error messages
 - Sender sending a copy of error packet along original path to avoid path asymmetry
Sending Data

• Check cache for route to D
• If route exists then
 – if reachable in one hop
 • send packet
 – else insert routing header to D and send
• If route does not exist, buffer packet and initiate route discovery
Performance Evaluation

• Models for
 – traffic: random pairs sending pseudo-CBR
 – mobility: random waypoint
 – node placement: random

• Metrics
 – path-length relative to optimal
 – message count relative to optimal
Mean Route Length vs. Movement

[Johnson96c], figure 7

number of nodes

Average route length / Optimal route length

Pause Time

(continuous movement)

(very stable)
Discussion

• Source routing is good for on demand routes instead of a priori distribution
• Route discovery protocol used to obtain routes on demand
 – Caching used to minimize use of discovery
• Periodic messages avoided
• But need to buffer packets