Reliable Multicast
CS557
Christos Papadopoulos
Introduction: What is Multicast?

- Unicast: one source to one destination
- Multicast: one source to many destinations
- Two main functions:
 - Efficient data distribution
 - Logical naming of a group
Error detection

- Sender-reliable
- Receiver-reliable
Sender-reliable

- Wait for ACKs from all receivers. Re-send on timeout or selective ACK
 - +: easy resource management
 - -: wait for ACK
 - -: receiver state in sender not scalable
 - -: ACK implosion
Receiver-reliable

- Receiver NACKs lost packet
 +: no state at sender - good for mcast
 -: does not provide 100% reliability
 -: NACK implosion
Retransmission

- Re-transmitter
 - options: sender, receiver

- How to retransmit
 - unicast, multicast, scoped multicast, retransmission group, ...

- Problem: Exposure
Aside: Using the routers

Routers do transport level processing:
• buffer packets
• fuse ACKs
• send retransmissions
• Model solves implosion and exposure, but not scalable.
• Violates end-to-end argument
• Is this still true with NDN?
Ideal recovery model

- “Ideal router”
- A single request is sent upstream
- A single repair is multicast from the nearest repairer to the subtree down the lossy link
SRM

- Receiver-reliable
 - NACK-based
- Every member may multicast NACK or retransmission
SRM Request Suppression
Deterministic Suppression

\[\text{Delay} = C_1 \times d_{S,R} \]
SRM Star Topology
Delay = \(U[0,C_2] \times d_{S,R} \)
SRM (summary)

- NACK/Retransmission suppression
 - Delay before sending
 - Delay based on RTT estimation
 - Deterministic + Stochastic components

- Periodic session messages
 - Full reliability
 - Estimation of distance matrix among members
What’s missing?

- Losses at link (A,C) causes retransmission to the whole group
- Only retransmit to those members who lost the packet
- Only request from the nearest responder
Local Recovery

- Application-level hierarchy
 - Fixed v.s. dynamic
- TTL scoped multicast
- Router supported
RMTP

- Reliable Multicast Transport Protocol by Purdue and AT&T Research Labs
- Designed for file dissemination (single-sender)
- Deployed in AT&T’s billing network
RMTP: Fixed hierarchy

- Rcvrs grouped into local regions
- Rcvr unicasts periodic ACK to its ACK Processor (AP), AP unicasts its own ACK to its parent
- Rcvr dynamically chooses closest statically configured Designated Receiver (DR) as its AP
RMTP: Error control

- DR checks retx “request” periodically
- Mcast or unicast retransmission
 - Based on percentage of requests
 - Scoped mcast for local recovery
- Immediate transmission request
 - Used for late join
RMTP: Comments

- +: Heterogeneity
 - Lossy link or slow receiver will only affect a local region

- -: Position of DR critical
 - Static hierarchy cannot adapt local recovery zone to loss points
PGM

- Cisco’s reliable multicast protocol
- NACK-based, with suppression
- Repair only forwarded to the NACKers
PGM: Request forwarding

- NACK + random delay
- Forwarded upstream towards the source
- Only one NACK is forwarded for every packet loss
- NCF: NACK suppression and hop-by-hop NACK reliability
PGM Summary
PGM Summary
PGM Summary
PGM Summary

\[\text{Src} \downarrow (x+1) \]

[Diagram of a PGM model]
PGM Summary
PGM Summary
PGM Summary

![Diagram]

Src

(x?)
PGM Summary
Problem: Repeated Retransmissions
LMS

- Light-weight Multicast Service
- Enhance multicast routing with selective forwarding, nothing beyond that
LMS

LMS extends router **forwarding** - what routers are meant to do in the first place

- No packet storing or processing at routers
- Strictly IP: no peeking into higher layers
The LMS concept

Heavy-weight model
Router stores packets, receives NACKs and sends retransmissions

LMS
Router chooses a receiver as a surrogate
Router steers all control messages to surrogate
Router relays messages from surrogate to the subtree
Receiver acting as a surrogate
Core Ideas

- Each router selects a replier (surrogate)
- Routers steer requests to repliers
- Routers help repliers multicast replies to loss subtree

LMS achieves the efficiency of the heavy-weight model, but without the weight
LMS: Concepts

- **Replier**
 - Receiver volunteered to answer requests

- **Turning point**
 - Where requests start to move downstream

- **Directed mcast**
 - Mcast to a subtree
Request Handling
Request from non-replier link
The Turning Point: stamp incoming iface
Out to replier link
Request handling
Request from replier link
Send upstream unchanged
Request handling
Request from upstream
To replier link unchanged

Src

RQ-XXX
LMS: Request forwarding

- Mcast to the group

- If a request reaches a turning point, it’s forwarded towards the replier

- No request suppression or merging, but scope of requests is limited
LMS: Reply forwarding

- At turning point, `<router_addr:link_id>` is added into request packet
- Replier includes it into its retx packet
- The specified router forwards packet downstream at `link_id`
- No retx suppression necessary
LMS Summary

DATA
NAK
RTX
LMS Summary
LMS Summary
LMS Summary
LMS Summary
LMS Summary

Source

- DATA
- NAK
- RTX
LMS Summary

- DATA
- NAK
- RTX
LMS Summary

- DATA
- NAK
- RTX
LMS Summary
LMS Summary
LMS Summary

- DATA
- NAK
- RTX
LMS Summary
LMS Summary

DATA
NAK
RTX
LMS Summary

- **DATA**
- **NAK**
- **RTX**
LMS Summary
LMS Summary

- DATA
- NAK
- RTX
LMS Summary
LMS Summary
LMS: Comments

- Replier problems
 - Selection? Fault tolerance?
 - How well will repliers scale w.r.t. |group|?
- Works with unidirectional shared trees (PIM)
 - Needs to relay requests from core/RP to sender
- Difficulties with bi-directional shared trees
 - Needs per-source state