Integrated and Differentiated Services

Christos Papadopoulos
(Remixed by Lorenzo De Carli)
CSU CS557, Fall 2017
Preliminary concepts: token buffer
Characterizing Traffic: Token Bucket Filter

- Parsimonious model to characterize traffic
- Described by 2 parameters:
 - token rate r: rate of tokens placed in the bucket
 - bucket depth B: capacity of the bucket
- Operation:
 - tokens are placed in bucket at rate r
 - if bucket fills, tokens are discarded
 - sending a packet of size P uses P tokens
 - if bucket has P tokens, packet sent at max rate, else must wait for tokens to accumulate
Token Bucket Operation

- **tokens**
- **overflow**
- **Packet**
- **tokens**
- **tokens**

- Enough tokens packet goes through, tokens removed
- Not enough tokens - wait for tokens to accumulate
Token Bucket Characteristics

- In the long run, rate is limited to r
- In the short run, a burst of size B can be sent
- Amount of traffic entering at interval T is bounded by:
 \[\text{traffic} = B + r*T \]
- Information useful to admission algorithm
Token Bucket Specs

<table>
<thead>
<tr>
<th>Time</th>
<th>Flow A</th>
<th>Flow B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

BW (MB) vs. Time

- Flow A: 1 MB constant from 1 to 3
- Flow B: 2 MB constant from 2 to 3
Token Bucket Specs

Flow A: $r = 1$ MBps, $B=1$ byte

 BW (MB)

1 2

Flow B

Flow A

1 2 3

Time
Token Bucket Specs

Flow A: $r = 1 \text{ MBps}$, $B=1 \text{ byte}$
Flow B: $r = 1 \text{ MBps}$, $B=1 \text{ MB}$

Diagram:
- **Flow A**: Constant rate of 1 MBps from 1 to 3 units of time.
- **Flow B**: Constant rate of 2 MBps from 2 to 3 units of time.

Axis Labels:
- **BW (MB)**
- **Time**
Possible Token Bucket Uses

• Shaping, policing, marking
 – delay pkts from entering net (shaping)
 – drop pkts that arrive without tokens (policing)
 – let all pkts pass through, mark ones without tokens
 • Then, network drops pkts without tokens during congestion
Preliminary concepts: RED queuing

Random Early Detection (RED)

• Motivation:
 – TCP detects congestion from loss - after queues have built up and increase delay (not good if goal is to keep queue utilization low!) (full queue problem)

• Aim:
 – keep throughput high and delay low
 – accommodate bursts

• Approach:
 – Probabilistically drop packets before congestions occurs
 – No per-flow state
Solving the Full Queues Problem

• Drop packets before queue becomes full (early drop)

• Intuition: notify senders of incipient congestion
 – example: early random drop (ERD):
 • if qlen > drop level, drop each new packet with fixed probability p
 • does not control misbehaving users
RED Operation

Max thresh

Min thresh

Average queue length

always drop

probabilistic drop

do not drop

P(drop)

MaxP

minthresh

maxthresh

Avg length
Integrated services (IntServ)
Integrated Services

- Basic idea: let applications specify whatever delay and bandwidth they desire, and network tries to satisfy the application

- Components:
 - **Service interface** between applications and network
 - **Admission Control** – which flows get in?
 - **Reservation Protocol** (e.g., RSVP) - signaling
 - **Scheduling algorithms** (e.g. Weighted Fair Queuing)

- A hot research area many years ago
 - Work has essentially stopped
 - But old ideas sometimes come back..
State of Integrated Services

• Lots of work done in the area
• We understand many of the problems
 – But no commercial interest in the technology
 – Too complex?
 • we can probably build schedulers in hardware
 • Need per-flow state for scheduling
 • Need end-to-end signaling

• Can we do something simpler?
Differentiated Services (DiffServ)
Key Ideas

• Traffic classes instead of flows
• Forwarding behaviors instead of end-to-end service guarantees
 – Tune applications to network services rather than network services to applications
 – Discrete vs. continuous space
• No resource reservation
• Somewhere between Best Effort and IntServ
Service Differentiation

• Analogy:
 – airline service, first class, coach, various restrictions on coach as a function of payment

• Best-effort expected to make up bulk of traffic, but revenue from first class important to economic base (will pay for more plentiful bandwidth overall)

• **Not motivated by real-time** but by economics and assurances
Types of Service

• **Premium service**: (type P)
 – admitted based on peak rate
 – conservative, virtual wire services
 – unused premium goes to best effort (subsidy!)

• **Assured service**: (type A)
 – based on expected capacity usage profiles
 – traffic unlikely to be dropped if user maintains profile.
 Out-of-profile traffic marked

• **Best effort**
Differences With Integrated Services

• No need for reservations: just mark packets
• Packet marking done at administrative boundaries before injecting packets into network
• Significant savings in signaling, much simpler overall
Service vs. Forwarding Treatment

• Service: end-to-end
• Forwarding treatment: hop-by-hop (at each router)
 – Reasoning: various forwarding treatments can be used to construct same e2e service
 – Free to implement treatments locally in various ways (buffer management and scheduling)
 – Example: no-loss service implemented with priority queue (but needs admission control)
Service Level Agreements

- Mostly static or long-lived. Specification:
 - Traffic profile (e.g., token bucket per class)
 - Performance metrics (throughput, delay, drop priority)
 - Actions for non-conformant packets
 - Additional marking/shaping
Where Things Happen

- Company A
 - Host
 - First hop router
 - Internal router
 - Border router

- ISP
 - Border router

Marked packets

Unmarked packet flow

Classify, police and mark

Only scheduling
No police or mark

Classify, police and mark
A Two-bit Differentiated Services Architecture for the Internet

Nichols99a
Premium vs. Assured Forwarding Behaviors

• **Premium** packets receive virtual circuit type of treatment
 – Appropriate for intolerant (of loss) and rigid (in delay) applications

• **Assured** packets receive “better than best effort” type of treatment
 – Appropriate for adaptive applications
2-bit Differentiated Service

- Precedence field encodes P & A type packets
- P packets are BW limited, shaped and queued at higher priority than ordinary best effort
- A packets treated preferentially wrt dropping probability in the normal queue
- Leaf and border routers have input and output tasks - other routers just output
Leaf Router Input Functionality

Markers: service class, rate, permissible burst size
Marker Function in Routers

- Leaf routers have traffic profiles - they classify packets based on packet header
- If no profile present, pass as best effort
- If profile is for A:
 - mark in-profile packets with A, forward others unmarked
- If profile is for P:
 - delay out-of-profile packets to shape into profile
Markers to Implement Two Different Services

Packet input → Wait for token → Set P bit → Packet output

Drop on overflow
Markers to Implement Two Different Services

Packet input → Wait for token → Set P bit → Packet output

Packet input → Test if token

No token:

Token:

Packet output

Drop on overflow
Output Forwarding

- 2 queues: P packets on higher priority queue
- Lower priority queue implements RED “In or Out” scheme (RIO)
- At border routers profile meters test marked flows:
 - drop P packets out of profile
 - unmark A packets
Router Output Interface for Two-bit Architecture

P-bit set?

yes

High-priority Q

no

If A-bit set
incr A_cnt

Low-priority Q

RIO queue management

If A-bit set
decr A_cnt

Packets out

30
Red With In or Out (RIO)

- For Assured Services
- Similar to RED, but with two separate probability curves
- Has two classes, “In” and “Out” (of profile)
- “Out” class has lower Minthresh, so packets are dropped from this class first
- As avg queue length increases, “in” packets are dropped
RIO Drop Probabilities

$P(\text{drop})$

Max P_{out}

Max P_{in}

Min P_{out}

Min P_{in}

AvgLen

32
RIO Drop Probabilities

More drop probability curves (WRED)?
Border Router Input Interface Profile

Meters

- Arriving packet
- Is packet marked?
 - A set
 - Token available?
 - no
 - P set
 - Token available?
 - no
 - Drop packet
 - token
 - Forwarding engine
 - token
 - Clear A-bit
Signaling

- **Where?**
 - static (long-term):
 - done out-of-band
 - dynamic:
 - from leaf to *Bandwidth Broker*
 - and from BB in one domain to another BB

- **How?**
 - not clear, but maybe RSVP
Signaling: BBs
Diffserv V.S. Intserv Summary

- Resources to aggregated traffic, not flows
- Traffic policing at the edges, class forwarding in the core
- Define forwarding behaviors, not services
- Guarantees by provisioning and SLAs, not reservations
- Focus on single domain, not e2e (need BBs for e2e)