Preliminary concepts: token buffer
Characterizing Traffic: Token Bucket Filter

- Parsimonious model to characterize traffic
- Described by 2 parameters:
 - token rate r: rate of tokens placed in the bucket
 - bucket depth B: capacity of the bucket
- Operation:
 - tokens are placed in bucket at rate r
 - if bucket fills, tokens are discarded
 - sending a packet of size P uses P tokens
 - if bucket has P tokens, packet sent at max rate, else must wait for tokens to accumulate
Token Bucket Operation

- Tokens overflow into the bucket.
- Packet is processed when there are enough tokens.
- Tokens are removed from the bucket.
- If there are not enough tokens, the packet is blocked and tokens accumulate in the bucket.

Examples:
- Enough tokens: packet goes through, tokens removed.
- Not enough tokens: wait for tokens to accumulate.
Token Bucket Characteristics

• In the long run, rate is limited to r
• In the short run, a burst of size B can be sent
• Amount of traffic entering at interval T is bounded by:
 \[\text{traffic} = B + r*T \]
• Information useful to admission algorithm
Token Bucket Specs

Flow A: \(r = 1\) MBps, \(B = 1\) packet
Flow B: \(r = 1\) MBps, \(B = 1\) MB
Possible Token Bucket Uses

• Shaping, policing, marking
 – delay pkts from entering net (shaping)
 – drop pkts that arrive without tokens (policing)
 – let all pkts pass through, mark ones without tokens
 • Then, network drops pkts without tokens during congestion
Preliminary concepts: RED queuing

Random Early Detection (RED)

• Motivation:
 – TCP detects congestion from loss - after queues have built up and increase delay (not good if goal is to keep queue utilization low!) (full queue problem)

• Aim:
 – keep throughput high and delay low
 – accommodate bursts

• Approach:
 – Probabilistically drop packets before congestions occurs
 – No per-flow state
Solving the Full Queues Problem

• Drop packets before queue becomes full (early drop)

• Intuition: notify senders of incipient congestion
RED Operation

Max thresh

always drop

probabilistic drop

do not drop

Min thresh

Average queue length

P(drop)

1.0

MaxP

minthresh

maxthresh

Avg length

P(drop)

always drop

probabilistic drop

do not drop

Min thresh

Average queue length

1.0

MaxP

minthresh

maxthresh

Avg length
Integrated services (IntServ)
Integrated Services

• Basic idea: let applications specify whatever delay and bandwidth they desire, and network tries to satisfy the application

• Components:
 – Service interface between applications and network
 – Admission Control – which flows get in?
 – Reservation Protocol (e.g., RSVP) - signaling
 – Scheduling algorithms (e.g. Weighted Fair Queuing)

• A hot research area many years ago
 – Work has essentially stopped
 – But old ideas sometimes come back..
State of Integrated Services

• Lots of work done in the area
• We understand many of the problems
 – But no commercial interest in the technology
 – Too complex?
 • we can probably build schedulers in hardware
 • Need per-flow state for scheduling
 • Need end-to-end signaling
• Can we do something simpler?
Differentiated Services (DiffServ)
Key Ideas

• **Traffic classes** instead of flows
• **Forwarding behaviors** instead of end-to-end service guarantees
 – Tune applications to network services rather than network services to applications
 – Discrete vs. continuous space
• No resource reservation
• Somewhere between Best Effort and IntServ
Service Differentiation

• Analogy:
 – airline service, first class, coach, various restrictions on coach as a function of payment

• Best-effort expected to make up bulk of traffic, but revenue from first class important to economic base (will pay for more plentiful bandwidth overall)

• Not motivated by real-time but by economics and assurances
Types of Service

• **Premium service**: (type P)
 – admitted based on peak rate
 – conservative, virtual wire services
 – unused premium goes to best effort (subsidy!)

• **Assured service**: (type A)
 – based on expected capacity usage profiles
 – traffic unlikely to be dropped if user maintains profile.
 Out-of-profile traffic marked

• **Best effort**
Differences With Integrated Services

- No need for reservations: just mark packets
- Packet marking done at administrative boundaries before injecting packets into network
- Significant savings in signaling, much simpler overall
Service vs. Forwarding Treatment

• Service: end-to-end
• Forwarding treatment: hop-by-hop (at each router)
 – Reasoning: various forwarding treatments can be used to construct same e2e service
 – Free to implement treatments locally in various ways (buffer management and scheduling)
 – Example: no-loss service implemented with priority queue (but needs admission control)
Service Level Agreements

• Mostly static or long-lived. Specification:
 – Traffic profile (e.g., token bucket per class)
 – Performance metrics (throughput, delay, drop priority)
 – Actions for non-conformant packets
 – Additional marking/shaping
Where Things Happen

Company A

Marked packets

Unmarked packet flow

host

first hop router

internal router

border router

police

Only scheduling
No police or mark

Classify, police and mark

ISP

border router
A Two-bit Differentiated Services Architecture for the Internet

Nichols99a
Premium vs. Assured Forwarding Behaviors

• **Premium** packets receive virtual circuit type of treatment
 – Appropriate for intolerant (of loss) and rigid (in delay) applications

• **Assured** packets receive “better than best effort” type of treatment
 – Appropriate for adaptive applications
2-bit Differentiated Service

- Precedence field encodes P & A type packets
- P packets are BW limited, shaped and queued at higher priority than ordinary best effort
- A packets treated preferentially wrt dropping probability in the normal queue
- Leaf and border routers have input and output tasks - other routers just output
Leaf Router Input Functionality

Arriving packet → Clear A & P bits → Packet classifier → Marker 1 → Marker N → Best effort → Forwarding engine

Markers: service class, rate, permissible burst size
Marker Function in Routers

• Leaf routers have traffic profiles - they classify packets based on packet header
• If no profile present, pass as best effort
• If profile is for A:
 – mark in-profile packets with A, forward others unmarked
• If profile is for P:
 – delay out-of-profile packets to shape into profile
Markers to Implement Two Different Services

Packet input → Wait for token → Set P bit → Packet output

Packet input → Test if token → Set A bit → No token → Packet output
Output Forwarding

• 2 queues: P packets on higher priority queue
• Lower priority queue implements RED “In or Out” scheme (RIO)
• At border routers profile meters test marked flows:
 – drop P packets out of profile
 – unmark A packets
Router Output Interface for Two-bit Architecture

- P-bit set?
 - no
 - If A-bit set incr A_cnt
 - RIO queue management
 - If A-bit set decr A_cnt
- yes
 - High-priority Q
 - Low-priority Q
 - Packets out

30
Red With In or Out (RIO)

• For Assured Services
• Similar to RED, but with two separate probability curves
• “Out” class has lower Minthresh, so packets are dropped from this class first
• As avg queue length increases, “in” packets are dropped
RIO Drop Probabilities

More drop probability curves (WRED)?
Border Router Input Interface Profile

Meters

Arriving packet

Is packet marked?

A set

P set

Token available?

Not marked

Token available?

Clear A-bit

Forwarding engine

no

no

Drop packet

Clear A-bit

token

Clear A-bit

token

33
Per-hop Behaviors (PHBs)

• Define behavior of individual routers rather than end-to-end services - there may be much more services than behaviors

• Multiple behaviors - need more than one bit in the header

• Six bits from IP tos field are taken for Diffserv code points (DSCP)
Signaling

• Where?
 – static (long-term):
 • done out-of-band
 – dynamic:
 • from leaf to Bandwidth Broker
 • and from BB in one domain to another BB

• How?
 – not clear, but maybe RSVP
Signaling: BBs
Diffserv V.S. Intserv Summary

• Resources to aggregated traffic, not flows
• Traffic policing at the edges, class forwarding in the core
• Define forwarding behaviors, not services
• Guarantees by provisioning and SLAs, not reservations
• Focus on single domain, not e2e (need BBs for e2e)
A few words on differential traffic treatment and net neutrality
What is net neutrality?

• The idea that Internet Service Providers (ISPs) shall abstain from providing preferential treatment to some types of traffic over others

• Hotly debated political issue

• Keep in mind that “net neutrality” is a policy concept, “traffic differentiation” is a technical concept… they are not necessarily incompatible (e.g. guaranteeing low-delay to real time traffic does not necessarily “penalize” a bulk file transfer)

• Let’s debunk a couple of myths…
Myth 1: the original Internet designers never considered differential treatment for commercial purposes

- That’s not true! Clark ’88 (“The Design Philosophy of the DARPA Internet Protocols”) clearly considers accountability (as a feature necessary for commercial exploitation)...
- … but states that it was not a priority because the original Internet was created for military uses
- The work we just discussed also shows that researchers have been thinking about commercial traffic classes for decades
Myth 2: treating different types of traffic differently is easily achievable

• That’s not true either! Lots of research on how to do preferential treatment of traffic, and yet a lot of problems remain unsolved…

• E.g., how can we distinguish traffic if the endpoints do not cooperate?
 • Can we accept false positives in this context?
Myth 2: treating different types of traffic differently is easily achievable - II

• If preferential treatment is in place, how can the user be informed in a way which is meaningful to her?

• “An ISP could […] say, for example, that it has deployed a token bucket filter of a certain size, fill rate, and drain rate […] This would constitute a disclosure of a network management practice, but it would be meaningless for consumers. On the other hand, other disclosures might be so vague as to be meaningless” Nick Feamster (Princeton), 3/2018
Bottom line?

• Whatever is your opinion on the net neutrality debate (if you have one)…

• Make sure it is technically informed!