
Foundations II

Sanjay Rajopadhye

Contents
1 Introduction & Motivation 1

2 Recurrence Equations 1

3 “Manipulating” Equations 4

4 Operations on Domains 7

1 Introduction & Motivation
These notes are a followup to the first set of foundation notes. They cover the
“manipulations” or transformations of systems of affine recurrence equations, and
also some of the basic material about the closure properties of polyhedra. We first
recap the ldefinitions from th eprevious set of notes.

2 Recurrence Equations
In what follows, Z denotes the set of integers, and N the set of natural numbers.

Definition 1 A Recurrence Equation defining a function (variable) X at all
points, z, in a domain, D, is an equation of the form

X[z] = DX : g(. . . X[f(z)] . . .) (1)

where
• z is an n-dimensional index variable.

1

• X is an “n-dimensional” data variable. There a couple of equivalent alter-
native ways to view X. It can be thought of as an n-dimensional array whose
values at all z ∈ DX are implicitly defined by the equation; it may also be seen
as a function of n integer arguments.

• f(z) is a dependency function (also called an index or access function),
f : Zn → Zn;

• the “. . . ” indicate that g may have other arguments, each with the same syntax;

• g is a strict, single-valued function; it is often written implicitly as an ex-
pression involving operands of the form X[f(z)] combined with basic operators
and parentheses. Note that for analysis purposes, g is considered atomic (i.e.,
executing in a single step) unless it has a reduction (as defined later). If it
has a reduction it may or may not be considered atomic, depending on the
assumptions of the machine model used for the analysis.

• DX is a set of points in Zn and is called the domain of the equation. Domains
are often polyhedral index spaces, parameterized with one or more, say s size
parameters. The parameters are viewed as an s-dimensional vector p.

A variable may be defined by more than one equation. In this case, we use the
syntax shown below:

X[z] =


...

Di : gi(. . . X[f(z)] . . .)
...

(2)

Each line is called a case, and the domain of X is the union of the (disjoint) domains
of all the cases, DX =

⋃
iDi.

Definition 2 A recurrence equation (1) as defined above, is called an Affine Re-
currence Equation (are) if every dependence function is of the form, f(z) =
Az+Bp+a, where A (respectively B) is a constant n×n (respectively, n× l) matrix
and a is a constant n-vector. It is said to be a Uniform Recurrence Equation
(ure) if it is of the form, f(z) = z+ a, where a is a constant n-dimensional vector,
called the dependence vector. ures are a proper subset of ares, where A is the
identity matrix and B = 0.

2

Definition 3 A system of recurrence equations (sre) is a set of m such equations,
defining the data variables X1 . . . Xm. Each variable, Xi is of dimension ni, and
since the equations may now be mutually recursive, the dependence functions f must
now have the appropriate type.

Problem Think of the above definitions of recurrence equations as an informal
syntax of an equational “programming” language. Before reading any further, please
try to describe some of the examples of Section 1 as sres. Explain what difficulties
you encounter.

Reductions

The key difficulty you must have encountered is that we have no syntax for the reduc-
tion operations: associative and commutative operators like addition, multiplication,
max, etc., applied to a collection of values.

We will now introduce a simple, yet powerful syntax for this. We simply allow
the function g to have the form, reduce(op, f ′, expr). Here,

• op is an associative and commutative operator;

• expr is an expression (it is most convenient to assume that the expression is
just a new variable, Y , and to assume that there is an equation Y = expr

defined over an appropriate domain DY);

• f ′ is a many-to-one mapping from indices to indices, usually it maps Zn to
Zn−k (where the expr is n-dimensional).

Consider a reduction equation as follows.

X(z) = reduce(op, f ′, Y)

Its semantics can be explained as follows. X is defined over a domain DX which
is the image of DY by the function f ′ (this implies DX is n−k-dimensional). Because
f ′ is many-to-one, each z ∈ DX is the image of many points z′ ∈ DY . The reduce
expression states that the value of X at any point z is obtained by applying op to
the values of Y at all the z′ that are mapped by f ′ to z (this is a mouthful; please
read each word carefully to make sure you understand what this says).

3

With this explanation, we can now write an sre for the forward substitution
example:

x[i] =

{
i = 1 : b[i]
i > 1 : b[i]− reduce(+, (i, j → i), T [i, j])

(3)

T [i, j] = {i, j | 1 ≤ j < i ≤ n} : Li,jxj (4)

Taxonomy of Recurrence Equations

As we have seen above, recurrence equations may be classified along many aspects:

• single or system;

• class of dependence functions: arbitrary, affine or uniform;

• parameterized domains or single domain;

• class of domains over which they are defined.

3 “Manipulating” Equations
We now describe what we can do with equations, in a more formal manner, as well
as the tools that such manipulation requires.

Domains, Polyhedra and Representations

The (data) variables defined in an sre may also be viewed as multidimensional array
variables (stored in some memory locations if the sre is viewed as a recursively
evaluated program), or alternatively as mappings from tuples of indices to values.
Hence, the domains over which the sres are defined play a crucial role in our analysis.

Note that these domains consist of integer-valued points, and the conventional
mathematical notions of polyhedra are typically over the reals or rationals. This
sometimes introduces subtle problems. For example, the image of a rational polyhe-
dron by an affine function is a always a rational polyhedron, but this closure prop-
erty does not hold for integer polyhedra: e.g. what is the image of the polyhedron,
{i, j | i = 2j} by the function (i, j → i)?).

We have already seen instances of domains in our informal examples, where we
simply used set-theoretic notation to describe them: {z ∈ Zn | P (z)}, where P is

4

some predicate (Boolean function of z, and possibly the size parameters). The syntax
of domains is

{i1, . . . in | c1, . . . cm}
where each ci is a single constraint (Boolean predicate) on the indices, and the comma
is assumed to mean conjunction (logical and).

We have also seen situations (e.g. branches of a “case”) where we have not com-
pletely specified the entire domain but have given only the pertinent condition al-
lowing us to distinguish between the cases under consideration. In general, such
sloppiness acceptable if the meaning is clear from the context.

Affine functions An index function from Zm to Zn is written as (i1, . . . im →
e1, . . . en), where the i’s are index names and the e’s are expressions involving the
i’s (and possibly, size parameters). When the e’s are linear or affine functions, the
index function is often written in matricial form, (z → Az+a) or (z → Az+Bp+a).
Here, A is an n ×m matrix, a is an n-vector, and B is an n × s matrix. Another
useful class of index functions are piecewise affine functions which are written with
the same “case-like” syntax used for sres.

Polyhedra

Definition 4 A polyhedron is a set of the form:

P = {x ∈ Zn | Qx ≥ q}

where Q is an m× n integer matrix, and q is an integer m-vector.

A parametric family of polyhedra corresponds to the case where the rhs of each
constraint is an affine function of the s size parameters p, i.e., P = {z ∈ Zn | Qz ≥
q −Bp}, or equivalently{(

z
p

)
∈ Zn+s |

[
Q B

] (z
p

)
≥ q

}
Thus, a parameterized family of polyhedra is just a single higher-dimensional

polyhedron. Note that the converse view—that any single n + s dimensional poly-
hedron is equivalent to a family, parameterized by s parameters, of n-dimensional
polyhedra—is valid for rational polyhedra, but not for integer polyhedra. For exam-
ple, the projection of an integral polyhedron on one of its axes is not necessarily an
integral polyhedron.

Polyhedra also admit an equivalent dual definition in terms of generators as
defined below.

5

Definition 5 A linear combination of given a set of vectors, v1, . . . vk, is the sum,
k∑

i=1

aivi, for a set of constant coefficients a1, . . . ak.

A positive combination is a linear combination where the coefficients are all non-
negative, i.e., ai ≥ 0 for i = 1 . . . k.

A convex combination is a positive combination with the additional constraint

that the coefficients add up to unity, i.e.,
k∑

i=1

ai = 1

A polytope, i.e., a bounded polyhedron is uniquely specified as the set of positive
combinations of a finite number of points called its vertices (the columns of G below).

{z ∈ Zn | z = Ga; ai ≥ 0;
∑

i

ai = 1}

If a polyhedron is unbounded, it may have rays and lines.

Definition 6 ρ is called a ray of a polyhedron, P iff, ∀z ∈ P, z + kρ ∈ P for any
k ≥ 0. A ray may be viewed as a direction along which the polyhedron “extends
unboundedly.” If a ρ and −ρ are both rays of a polyhedron, they constitute a line.

In general, a polyhedron can be defined in the generator form as a convex com-
bination of its vertices, a positive combination of its rays and a linear combination
of its lines, as follows:

P = {z ∈ Zn | z = V a+Rb+ Lc; ai, bi ≥ 0;
∑

i

ai = 1}

Example 1: Consider {i, j, n | 0 ≤ j ≤ i; j ≤ n; 1 ≤ n} as a 3-dimensional
polyhedron. It has two vertices: [0, 0, 1] and [1, 1, 1]. Its rays are the vectors in
the set {[1, 0, 0], [0, 0, 1], [0, 1, 1]}. The same polyhedron, viewed as a 2-dimensional
polyhedron (parameterized by n) has two vertices, {[0, 0], [n, n]} and a ray, [1, 0].

For a single polyhedron, the vertices, rays and lines are constants. For a para-
metric family polyhedra the vertices, rays and lines are all piece-wise affine functions
of the parameters.

Example 2: Consider P1 = {i, j, n,m | 0 ≤ j ≤ i ≤ n; j ≤ m; 1 ≤ n,m} as a
2-dimensional polyhedron (with parameters n and m). Depending on the relative
values of its parameters, it is either a triangle (if n ≤ m) or a trapezium (otherwise).
It does not have rays, and we can see that the set of its vertices is a piece-wise affine
function of its parameters:

6

4 Operations on Domains
If we review the rules of transformation (CoB) of equations and also consider the
different ways we may need to manipulate, sres, we realize that domain should be
an abstract data type (ADT) that supports the following operations:

• Intersection

• Union

• Preimage by the class of dependence functions

• Image by the class CoB transformation functions

In addition, we must ensure that

• The CoB Transformation functions must belong to the class of Dependence
functions

• Dependence functions are closed under composition

If we do this, then our equations will be “closed” under the kinds of manipulations
we seek. We will see how polyhedra support these operations. It turns out that for
some operations, the constraint representation is useful, and for others, the generator
representation leads to easier manipulation.

Intersection: For arbitrary domains (i.e., sets of integer vectors) the set-theoretic
notion of intersection carries through. For polyhedral domains, the constraint repre-
sentation of polyhedra is obviously suitable, we simply put all the constraints together
(and simplify to remove redundant constraints). Let P1 = {x ∈ Zn | Q1x ≥ q1}, and
P2 = {x ∈ Zn | Q2x ≥ q2}. Then

P1 ∩ P2 =

{
x ∈ Zn |

[
Q1

Q2

]
x ≥

(
q1
q2

)}

Union: For arbitrary domains, the set-theoretic definition holds. For polyhedral
domains, the first thing to note is that we do not have closure (the union of two
polyhedra in not necessarily a polyhedron) but we can define the convex hull (the
smallest polyhedron that contains the union). For computing this, the generator rep-
resentation is more suitable, and is easiest to see for polytopes (no rays and lines).

7

The convex hull of the union of P1 defined by vertices v1 . . . vk and P2 defined by ver-
tices v′1 . . . v′l is a polyhedron with vertices belonging to a subset of v1 . . . vk, v

′
1 . . . v

′
l.

We simply put all the vertices together (and simplify to remove points that can be
expressed as the linear combination of the others; there are standard convex hull
algorithms).

Image and Preimage: For any set S ⊆ Zn and functions f1 : Zn → Zm, and
f2 : Zm′ → Zn, the image of S by f1, denoted by Image(S, f1), or simply f1(S) is
the set of points obtained by applying f1 to all the points in S, i.e., f1(S) = {x ∈
Zm | x = f1(z), z ∈ S}. The preimage of S by f2 denoted by PreImage(S, f2),
or simply f−1

2 (S) is the set of points that are mapped by f2 to points in S, i.e.,
f−1

2 (S) = {x ∈ Zm′ | f2(x) ∈ S}.
Note that rational polyhedra are closed under image by an affine function, but not

integer polyhedra, but again, we can find the convex hull of the image. The generator
representation is useful for finding the image and the constraint representation is
useful for finding the preimage.

A(z) ≡ Zn → Zm : z 7→ Az + a (5)
P ≡ polyhedron ⊆ Zm (6)

A−1(P) ≡ PreImage(P ,A) (7)
≡ {z ∈ Zn | A(z) ∈ P} (8)

by definition = {z ∈ Zn | Az + a ∈ P} (9)
constraint repr. = {z ∈ Zn | Q(Az + a) ≥ q} (10)

= {z ∈ Zn | QAz ≥ q −Qa} (11)

thus the preimage is a polyhedron with constraints 〈QA, q −Qa〉.

A(z) ≡ Zn → Zm : z 7→ Az + a (12)
P ≡ polyhedron ⊆ Zn (13)

A(P) ≡ Image(P ,A) (14)
≡ {A(z) ∈ Zm | z ∈ P} (15)

The image is a polyhedron with vertices 〈AV +a〉 and rays 〈AR〉. Practical hint:
it is also preimage by A−1.

8

Change of Basis (CoB)

The most important manipulation that we can perform on an sre is called a change
of basis of its variable(s) (also called a reindexing transformation or space-time map-
ping). The transformation, T must admit a left inverse for all points in the domain
of the variable. When applied to the variable X of an sre defined as follows:

X[z] =


...

DX
i : gi(. . . Y [f(z)] . . .)

...

(16)

the sre obtained by applying the following rules is provably equivalent to the original:

• Replace each DX
i by T (DX

i), the image of DX
i by T .

• On the right hand side (rhs) of the equation for X, replace each dependency f
by f ◦ T −1, the composition1 of f and T −1.

• In all occurrences X[g(z)] on the rhs of any equation, replace the dependency
g by T ◦ g.

The occurrences of X on the rhs of the equation for X itself constitute a special case
where the last two rules are both applicable, and we replace the dependency f by
T ◦ f ◦ T −1.

1Recall that function composition is right associative, i.e., (g ◦ h)(z) = g(h(z)).

9

