
High-Performance Embedded
Systems-on-a-Chip

Lecture 11: Alpha (contd)
Sanjay Rajopadhye

Computer Science, Colorado State University

High-Performance Embedded Systems-on-a-Chip – p.1/14

Outline

� Other Transformations:

� Cut

� Merge

� Analyze

� Simplify

� AddLocal

� Array Notation

� Change of Basis

High-Performance Embedded Systems-on-a-Chip – p.2/14

“Cut” the domain of X with � ��� � ���

...

var X :

�
	 of ...
...

X =

�

expr

�

...

var X : of ...

var X1 : of ...

var X2 : of ...
...

X1 = expr

X2 = expr

X = case X1; X2; esac;
...

where , and are the two halfspaces

defined by . Next, substituteInDef for all uses of , and

then eliminate

High-Performance Embedded Systems-on-a-Chip – p.3/14

“Cut” the domain of X with � ��� � ���

...

var X :

�
	 of ...
...

X =

�

expr

�

...

var X :

�
	 of ...

var X1 :
�	
 �

of ...

var X2 :

�	
 � �

of ...
...

X1 =

�	
 ��� �

expr

�

X2 =

�	
 � � � �

expr

�

X = case X1; X2; esac;
...

where

� �� ��� � � � , and

� � �� � � � � � are the two halfspaces

defined by� � � �� � .

Next, substituteInDef for all uses of , and

then eliminate

High-Performance Embedded Systems-on-a-Chip – p.3/14

“Cut” the domain of X with � ��� � ���

...

var X :

�
	 of ...
...

X =

�

expr

�

...

var X :

�
	 of ...

var X1 :
�	
 �

of ...

var X2 :

�	
 � �

of ...
...

X1 =

�	
 ��� �

expr

�

X2 =

�	
 � � � �

expr

�

X = case X1; X2; esac;
...

where

� �� ��� � � � , and

� � �� � � � � � are the two halfspaces

defined by� ��� �� � . Next, substituteInDef for all uses of

�

, and

then eliminate

�

High-Performance Embedded Systems-on-a-Chip – p.3/14

Still More Transf ormations

� Cut

� Merge

� Analyze

� Simplify

� AddLocal

High-Performance Embedded Systems-on-a-Chip – p.4/14

Arra y Notation

In general, a normalized equation has the form:

X = case��� � ! " #%$ � � ��& "' (')� $ * + �-, ��� . / �

op ...
...

esac;

The number of index variables in

any to the left of the

any to the left of the |

and in the of

are all equal

High-Performance Embedded Systems-on-a-Chip – p.5/14

Arra y Notation

In general, a normalized equation has the form:

X = case��� � ! " #%$ � � ��& "' (')� $ * + �-, ��� . / �

op ...
...

esac;

The number of index variables in

�

any

021%3 4 5

to the left of the 6

�

any

021%7 8 9 :<; 5
to the left of the |�

and in the
0 1%7 8 9 : ; 5

of

=

are all equal

High-Performance Embedded Systems-on-a-Chip – p.5/14

Arra y Notation

In general, a normalized equation has the form:

X = case��� � ! " #%$ � � ��& "' (')� $ * + �-, ��� . / �

op ...
...

esac;

The number of index variables in

�

any

021%3 4 5

to the left of the 6

�

any

021%7 8 9 :<; 5
to the left of the |�

and in the
0 1%7 8 9 : ; 5

of

=

are all equal

High-Performance Embedded Systems-on-a-Chip – p.5/14

Recipe

� rename all indices to be the same

� move them to the left of the equation

� drop them from the rhs (wherever they occur)

Add (syntactic) sugar, shake well and serve!

High-Performance Embedded Systems-on-a-Chip – p.6/14

Recipe

� rename all indices to be the same

� move them to the left of the equation

� drop them from the rhs (wherever they occur)

� Add (syntactic) sugar, shake well and serve!

High-Performance Embedded Systems-on-a-Chip – p.6/14

Outline

� Introduction

� ALPHA Syntax ALPHA

� (Denotational) Semantics

� Substitution, Normalization, & . . .

� Change of Basis (oh no, not again)

High-Performance Embedded Systems-on-a-Chip – p.7/14

Consid er the ALPHA program

...

var X :

�>	 of ...
...

X =

�. ? / ' �

...

and affine functions and such that , i.e.,

High-Performance Embedded Systems-on-a-Chip – p.8/14

Consid er the ALPHA program

...

var X :

�>	 of ...
...

X =

�. ? / ' �

...

and affine functions
@ A

and

@

such that

@ A>B @ C D

, i.e.,

@ AE @EGF H H CF
High-Performance Embedded Systems-on-a-Chip – p.8/14

CoB in Alpha

�

Every occurrence of

=

(on the rhs of any equation) can be

replaced by

=JI @ A I @

, without affecting the semantics.

�

Introduce a new variable

= A C =JI @ A C 03 K 4L 5 I @ A

�

Its domain is Pre

E MONQP @ A H

�

Replace every occurrence of the subexpression

=JI @ A

in the

program by

= A

�

Since

=

is no longer used in the program, drop it, and then

rename the

= A
to be

=

High-Performance Embedded Systems-on-a-Chip – p.9/14

Summary: Three Simple Rules

Replace

� the domain

RTS of U by Pre

V RSXW Y

� all occurrences of U (on any rhs) by U[Z

� compose a

\

dependence at the end of the entire
rhs of the equation of U.

High-Performance Embedded Systems-on-a-Chip – p.10/14

Example (Fibon acci again)

changeOfBasis["Fib.(i -> -i)", "i"]; show[]

system FibSys : N| 1<=N ()

returns (F : integer);

var Fib : i | -N<=i<=-1 of integer;

let

Fib = case

i|i<=2 : 1.(i->);

i|i>=3 : Fib.(i->-i).(i->i-1)

+ Fib.(i->-i).(i->i-2);

esac.(i->-i);

F = Fib.(i->-i).(->N);

tel;

High-Performance Embedded Systems-on-a-Chip – p.11/14

Example (Fibon acci again)

changeOfBasis["Fib.(i -> -i)", "i"]; show[]

system FibSys :

]

N| 1<=N

^

()

returns (F : integer);

var Fib :

]

i | -N<=i<=-1
^

of integer;

let

Fib = case]

i|i<=2

^

: 1.(i->);]

i|i>=3

^

: Fib.(i->-i).(i->i-1)

+ Fib.(i->-i).(i->i-2);

esac.(i->-i);

F = Fib.(i->-i).(->N);

tel;

High-Performance Embedded Systems-on-a-Chip – p.11/14

Norm alize again

normalize[]; show[]

system FibSys :

]

N| 1<=N

^

()

returns (F : integer);

var Fib :

]

i | -N<=i<=-1
^

of integer;

let

Fib = case]

i|-2<=i

^

: 1.(i->);]

i|i<=-3

^

: Fib.(i->i+1)

+ Fib.(i->i+2)

esac;

F = Fib.(->-N);

tel;

High-Performance Embedded Systems-on-a-Chip – p.12/14

Generaliz ed CoB

� is unimodular (simplest case)

� is not square (but admits an integral left inverse),

eg. alignment

Can you do even better? What about a transformation
applied to a variable whose domain is

really a line-segment, “embedded” in a 2-D index
space must admit an integral left inverse, in the
context of the variable , i.e.,

High-Performance Embedded Systems-on-a-Chip – p.13/14

Generaliz ed CoB

� is unimodular (simplest case)

� is not square (but admits an integral left inverse), eg.
alignment

V`_ a _W _ Y

Can you do even better? What about a transformation
applied to a variable whose domain is

really a line-segment, “embedded” in a 2-D index
space must admit an integral left inverse, in the
context of the variable , i.e.,

High-Performance Embedded Systems-on-a-Chip – p.13/14

Generaliz ed CoB

� is unimodular (simplest case)

� is not square (but admits an integral left inverse), eg.
alignment

V`_ a _W _ Y

� Can you do even better? What about a transformationV`_W b a _W c Y

applied to a variable whose domain is
really a line-segment, “embedded” in a 2-D index
space must admit an integral left inverse, in the
context of the variable , i.e.,

High-Performance Embedded Systems-on-a-Chip – p.13/14

Generaliz ed CoB

� is unimodular (simplest case)

� is not square (but admits an integral left inverse), eg.
alignment

V`_ a _W _ Y

� Can you do even better? What about a transformationV`_W b a _W c Y

applied to a variable whose domain is
really a line-segment, “embedded” in a 2-D index
space

must admit an integral left inverse, in the
context of the variable , i.e.,

High-Performance Embedded Systems-on-a-Chip – p.13/14

Generaliz ed CoB

� is unimodular (simplest case)

� is not square (but admits an integral left inverse), eg.
alignment

V`_ a _W _ Y

� Can you do even better? What about a transformationV`_W b a _W c Y

applied to a variable whose domain is
really a line-segment, “embedded” in a 2-D index
space must admit an integral left inverse,

A

in the
context of the variable

U

, i.e.,
dXe f RNW A V V e Y Yhg e

High-Performance Embedded Systems-on-a-Chip – p.13/14

Why does it work?

�

ALPHA domains (finite unions of polyhedra) constitute an abstract
data type (ADT), closed under:�

Intersection�

Union (of finitely many members of the ADT)�

Preimage by (arbitrary) affine functions (the class of
dependences in ALPHA).�

Image by unimodular affine functions (the class of
transformations used for changes of bases).

�

The class of transformations (unimodular affine functions) is a
subset of the class of dependences

�

the class of dependences is closed under composition

High-Performance Embedded Systems-on-a-Chip – p.14/14

	Outline
	{``Cut'' the domain of X with $a^Tz=a_0$}
	Still More Transformations
	Array Notation
	Recipe
	Outline
	Consider the A{small LPHA} program
	CoB in Alpha
	Summary: Three Simple Rules
	Example (Fibonacci again)
	Normalize again
	Generalized CoB
	Why does it work?

