# High-Performance Embedded Systems-on-a-Chip Lecture 11: Alpha (contd) 

Sanjay Rajopadhye

Computer Science, Colorado State University

## Outline

- Other Transformations:
- Cut
- Merge
- Analyze
- Simplify
- AddLocal
- Array Notation
- Change of Basis


## "Cut" the domain of $\boldsymbol{X}$ with $a^{T} z=a_{0}$

## "Cut" the domain of $\boldsymbol{X}$ with $a^{T} z=a_{0}$

| $\vdots$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{var}$ |  | $X$ | $:$ | $\mathcal{D}_{X}$ | of | $\ldots$ |
| $\vdots$ |  |  |  |  |  |  |
| $X$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| $\vdots$ |  |  |  |  |  |  |


where $H \equiv a^{T} z \geq a_{0}$, and $H^{\prime} \equiv a^{T} z<a_{0}$ are the two halfspaces defined by $a^{T} z=a_{0}$.

## "Cut" the domain of $\boldsymbol{X}$ with $a^{T} z=a_{0}$

| $\vdots$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{var}$ |  | $X$ | $:$ | $\mathcal{D}_{X}$ | of | $\ldots$ |
| $\vdots$ |  |  |  |  |  |  |
| $X$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| $\vdots$ |  |  |  |  |  |  |


where $H \equiv a^{T} z \geq a_{0}$, and $H^{\prime} \equiv a^{T} z<a_{0}$ are the two halfspaces defined by $a^{T} z=a_{0}$. Next, substituteInDef for all uses of X , and then eliminate $X$

## Still More Transformations

- Cut
- Merge
- Analyze
- Simplify
- AddLocal


## Array Notation

In general，a normalized equation has the form：
$X=$ case
〈Domain〉：〈VarOrConst〉．〈Dep〉 op ．．．
esac；

## Array Notation

In general，a normalized equation has the form：
$\mathrm{X}=$ case〈Domain〉：〈VarOrConst〉．〈Dep〉 op ．．． $\vdots$
esac；

The number of index variables in
－any $\langle\mathrm{Dep}\rangle$

- any 〈Domain〉
- and in the 〈Domain〉 of X
to the left of the $\rightarrow$ to the left of the｜


## Array Notation

In general，a normalized equation has the form：
X＝case〈Domain〉：〈VarOrConst〉．〈Dep〉 op ．．． $\vdots$
esac；

The number of index variables in
－any $\langle\mathrm{Dep}\rangle$

- any 〈Domain〉
- and in the 〈Domain〉 of $X$
are all equal


## Recipe

- rename all indices to be the same
- move them to the left of the equation
- drop them from the rhs (wherever they occur)


## Recipe

- rename all indices to be the same
- move them to the left of the equation
- drop them from the rhs (wherever they occur)
- Add (syntactic) sugar, shake well and serve!
- Introduction
- ALPHA Syntax Alpha
- (Denotational) Semantics
- Substitution, Normalization, \& ...
- Change of Basis (oh no, not again)


## Consider the ALPHA program

```
var X : \mathcal{D}
X = \langleexpr\rangle
```


## Consider the ALPHA program

$$
\begin{aligned}
& \text { var } \quad \mathrm{X}: \mathcal{D}_{X} \text { of } \cdots \\
& \vdots \\
& \mathrm{X}=\langle\operatorname{expr}\rangle \\
& \vdots
\end{aligned}
$$

and affine functions $\mathcal{T}^{\prime}$ and $\mathcal{T}$ such that $\mathcal{T}^{\prime} \circ \mathcal{T}=$ I, i.e.,
$\mathcal{T}^{\prime}(\mathcal{T}(z))=z$

## CoB in Alpha

- Every occurrence of $X$ (on the rhs of any equation) can be replaced by $\mathrm{X} . \mathcal{T}^{\prime} \cdot \mathcal{T}$, without affecting the semantics.
- Introduce a new variable

$$
\mathrm{X}^{\prime}=\mathrm{X} \cdot \mathcal{T}^{\prime}=\langle\operatorname{expr}\rangle \cdot \mathcal{T}^{\prime}
$$

- Its domain is $\operatorname{Pre}\left(\mathcal{D}_{X}, \mathcal{T}^{\prime}\right)$
- Replace every occurrence of the subexpression x. $\mathcal{T}^{\prime}$ in the program by $X^{\prime}$
- Since $x$ is no longer used in the program, drop it, and then rename the $\mathrm{X}^{\prime}$ to be X


## Summary: Three Simple Rules

## Replace

- the domain $\mathcal{D}_{X}$ of x by $\operatorname{Pre}\left(\mathcal{D}_{X}, \mathcal{T}\right)$
- all occurrences of $x$ (on any rhs) by $x . \mathcal{T}$
- compose a $\mathcal{T}^{\prime}$ dependence at the end of the entire rhs of the equation of x .


## Example (Fibonacci again)

changeOfBasis["Fib.(i -> -i)", "i"]; show[]

## Example (Fibonacci again)

changeOfBasis["Fib. (i -> -i)", "i"]; show[]

```
system FibSys : {N| 1<=N} ()
returns (F : integer);
var Fib: {i | -N<=i<=-1} of integer;
let
Fib = case
    {i|i<=2} : 1.(i->);
    {i|i>=3} : Fib.(i->-i).(i->i-1)
        + Fib.(i->-i).(i->i-2);
    esac.(i->-i);
F = Fib.(i->-i).( ->N);
tel;
```


## Normalize again

## normalize[]; show[]

system FibSys : $\{\mathrm{N} \mid 1<=\mathrm{N}\}$ ()
returns (F : integer);
var Fib: $\{\mathbf{i} \mid-N<=i<=-1\}$ of integer;
let
Fib = case
$\{i \mid-2<=i\}: 1 .(i->) ;$
$\{i \mid i<=-3\}:$ Fib. (i->i+1)

+ Fib. (i->i+2)
esac;
F = Fib. ( $->-N$ );
tel;


## Generalized CoB

- $\mathcal{T}$ is unimodular (simplest case)
- $\mathcal{T}$ is not square (but admits an integral left inverse),


## Generalized CoB

- $\mathcal{T}$ is unimodular (simplest case)
- $\mathcal{T}$ is not square (but admits an integral left inverse), eg. alignment $(i \rightarrow i, i)$


## Generalized CoB

- $\mathcal{T}$ is unimodular (simplest case)
- $\mathcal{T}$ is not square (but admits an integral left inverse), eg. alignment (i $\rightarrow \mathrm{i}, \mathrm{i}$ )
- Can you do even better? What about a transformation (i,j $\rightarrow \mathrm{i}, 0$ )


## Generalized CoB

- $\mathcal{T}$ is unimodular (simplest case)
- $\mathcal{T}$ is not square (but admits an integral left inverse), eg. alignment (i $\rightarrow \mathrm{i}, \mathrm{i}$ )
- Can you do even better? What about a transformation ( $\mathrm{i}, \mathrm{j} \rightarrow \mathrm{i}, 0$ ) applied to a variable whose domain is really a line-segment, "embedded" in a 2-D index space


## Generalized CoB

- $\mathcal{T}$ is unimodular (simplest case)
- $\mathcal{T}$ is not square (but admits an integral left inverse), eg. alignment (i $\rightarrow \mathrm{i}, \mathrm{i}$ )
- Can you do even better? What about a transformation ( $\mathrm{i}, \mathrm{j} \rightarrow \mathrm{i}, 0$ ) applied to a variable whose domain is really a line-segment, "embedded" in a 2-D index space $\mathcal{T}$ must admit an integral left inverse, $\mathcal{T}^{\prime}$ in the context of the variable $x$, i.e.,

$$
\forall z \in \mathcal{D}_{X}, \mathcal{T}^{\prime}(\mathcal{T}(z))=z
$$

## Why does it work?

- ALPHA domains (finite unions of polyhedra) constitute an abstract data type (ADT), closed under:
- Intersection
- Union (of finitely many members of the ADT)
- Preimage by (arbitrary) affine functions (the class of dependences in Alpha).
- Image by unimodular affine functions (the class of transformations used for changes of bases).
- The class of transformations (unimodular affine functions) is a subset of the class of dependences
- the class of dependences is closed under composition

