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“Cut” the domain of X with o’z = ag
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“Cut” the domain of X with o’z = ag

X Dx of
X1 : Dx "H of
X2 . DxnNH of

X1 = Dx N H : (expr)
X = (expr) X2 = Dx NH': (expr)
: X = case X1: X2: esac:

where H = a2z > ag, and H' = o’z < ag are the two halfspaces

defined by a’'z = ay.
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“Cut” the domain of X with o’z = ag

X Dx of
X1 : Dx "H of
X2 . DxnNH of

X1 = Dx N H : (expr)
X = (expr) X2 = Dx NH': (expr)
: X = case X1: X2: esac:

where H = a2z > ag, and H' = o’z < ag are the two halfspaces
defined by a’ 2z = ag. Next, subst it ut el nDef for all uses of X, and

. then eliminate X
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Still More Transformations
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Array Notation

general, a normalized equation has the form:

— Case
(Domain) : (VarOrConst).(Dep) 0Op . ..

esac,
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Array Notation

general, a normalized equation has the form:

X = case
(Domain) : (VarOrConst).(Dep) 0Op . ..

esac,

The number of index variables In

° any (Dep) to the left of the —
® any (Domain) to the left of the |
* and in the (Domain) of X
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Array Notation

general, a normalized equation has the form:

X = case
(Domain) : (VarOrConst).(Dep) 0Op . ..

esac,

The number of index variables In

° any (Dep) to the left of the —
® any (Domain) to the left of the |
* and in the (Domain) of X

are all equal
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Recipe

* rename all indices to be the same
* move them to the left of the equation

» drop them from the rhs (wherever they occur)
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Recipe

rename all indices to be the same
* move them to the left of the equation

» drop them from the rhs (wherever they occur)
e Add (syntactic) sugar, shake well and serve!
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Outline

* |ntroduction
* ALPHA Syntax ALPHA

* (Denotational) Semantics
* Substitution, Normalization, & ...
* Change of Basis (oh no, not again)

l High-Performance Embedded Systems-on-a-Chip — p.7/1.



Consid er the ALPHA program
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Consid er the ALPHA program

and affine functions 7’ and 7 such that 7/ o T
T (T(2) ==

|
H
D
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CoB In Alpha

Every occurrence of X (on the rhs of any equation) can be
replaced by X.77.T, without affecting the semantics.

° Introduce a new variable
X' =X.T' = (expr).T’

* Its domain is Pre(Dx, 7"

* Replace every occurrence of the subexpression X.7" in the
program by X’

® Since X is no longer used in the program, drop it, and then
rename the X’ to be X
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Summary: Three Simple Rules

eplace
* the domain Dy of X by Pre(Dx, T)
* all occurrences of x (on any rhs) by x.7

* compose a 7' dependence at the end of the entire
rhs of the equation of X.
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Example (Fibon acci again)

changeO' Basi s["Fib. (i ->-1)", "1"]; show]
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Example (Fibon acci again)

changeO' Basi s["Fib. (i ->-1)", "1"]; show]
system FibSys : {N 1<=N} ()

returns (F : | nt eger);

var Fib : {i | -N<=i<=-1} of integer;
| et

Fib = case

{ili<=2} : 1.(i->);
{i]i>=3} : Fib.(i->1).(i->-1)
+ Fib. (i->1)(i->-2);
esac. (I ->-1);
F=Fib. (i->i)( ->N;
tel;
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Norm alize again

normal i ze[]; show]
system FibSys : {N 1<=N} ()
returns (F : | nt eger);

var Fib : {i | -N<=i<=-1} of integer;
| et
Fib = case

{i|-2<=1} : 1.(i->);

{i|i<=-3} : Fib.(i->+1)

+ Fib. (1->i+2)

esac;
F=Fib.( ->N);
tel;
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Generaliz ed CoB

* T is unimodular (simplest case)

* T is not square (but admits an integral left inverse),
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Generaliz ed CoB

* T is unimodular (simplest case)

* T is not square (but admits an integral left inverse), eg.
alignment (i — i, 1)
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Generaliz ed CoB

* T is unimodular (simplest case)

* T is not square (but admits an integral left inverse), eg.
alignment (i — i, 1)

* Can you do even better? What about a transformation
(1i,j — 1,0)
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Generaliz ed CoB

* T is unimodular (simplest case)
* T is not square (but admits an integral left inverse), eg.
alignment (i — i, 1)

* Can you do even better? What about a transformation
(i,j — i,0) applied to a variable whose domain is
really a line-segment, “embedded” in a 2-D index
space
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Generaliz ed CoB

* T is unimodular (simplest case)
* T is not square (but admits an integral left inverse), eg.
alignment (i — i, 1)

* Can you do even better? What about a transformation
(i,j — i,0) applied to a variable whose domain is
really a line-segment, “embedded” in a 2-D index
space 7 must admit an integral left inverse, 7' in the
context of the variable X, I.e.,

Ve Dx, T (T(2) ==
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Why does it work?

® ALPHA domains (finite unions of polyhedra) constitute an abstract
data type (ADT), closed under:
® Intersection
® Union (of finitely many members of the ADT)

® Preimage by (arbitrary) affine functions (the class of
dependences in ALPHA).

® Image by unimodular affine functions (the class of
transformations used for changes of bases).

® The class of transformations (unimodular affine functions) is a
subset of the class of dependences

® the class of dependences is closed under composition
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