High-P erformance Embedded
Systems-on-a-Chip

Lecture 11: Alpha (contd)

Sanjay Rajopadhye

Computer Science, Colorado State University

l High-Performance Embedded Systems-on-a-Chip — p.1/1.

* Cut

* Ana
* Sim
* Add

* Other Transformations:

* Merge

yze

slify

_ocal

* Array Notation

* Change of Basis

Outline

High-Performance Embedded Systems-on-a-Chip — p.2/1.

“Cut” the domain of X with o’z = ag

I High-Performance Embedded Systems-on-a-Chip — p.3/1.

“Cut” the domain of X with o’z = ag

X Dx of
X1 : Dx "H of
X2 . DxnNH of

X1 = Dx N H : (expr)
X = (expr) X2 = Dx NH': (expr)
: X = case X1: X2: esac:

where H = a2z > ag, and H' = o’z < ag are the two halfspaces

defined by a’'z = ay.

l High-Performance Embedded Systems-on-a-Chip — p.3/1.

“Cut” the domain of X with o’z = ag

X Dx of
X1 : Dx "H of
X2 . DxnNH of

X1 = Dx N H : (expr)
X = (expr) X2 = Dx NH': (expr)
: X = case X1: X2: esac:

where H = a2z > ag, and H' = o’z < ag are the two halfspaces
defined by a’ 2z = ag. Next, subst it ut el nDef for all uses of X, and

. then eliminate X

High-Performance Embedded Systems-on-a-Chip — p.3/1.

Still More Transformations

I High-Performance Embedded Systems-on-a-Chip — p.4/1.

Array Notation

general, a normalized equation has the form:

— Case
(Domain) : (VarOrConst).(Dep) 0Op . ..

esac,

I High-Performance Embedded Systems-on-a-Chip — p.5/1.

Array Notation

general, a normalized equation has the form:

X = case
(Domain) : (VarOrConst).(Dep) 0Op . ..

esac,

The number of index variables In

° any (Dep) to the left of the —
® any (Domain) to the left of the |
* and in the (Domain) of X

l High-Performance Embedded Systems-on-a-Chip — p.5/1.

Array Notation

general, a normalized equation has the form:

X = case
(Domain) : (VarOrConst).(Dep) 0Op . ..

esac,

The number of index variables In

° any (Dep) to the left of the —
® any (Domain) to the left of the |
* and in the (Domain) of X

are all equal

l High-Performance Embedded Systems-on-a-Chip — p.5/1.

Recipe

* rename all indices to be the same
* move them to the left of the equation

» drop them from the rhs (wherever they occur)

l High-Performance Embedded Systems-on-a-Chip — p.6/1.

Recipe

rename all indices to be the same
* move them to the left of the equation

» drop them from the rhs (wherever they occur)
e Add (syntactic) sugar, shake well and serve!

l High-Performance Embedded Systems-on-a-Chip — p.6/1.

Outline

* |ntroduction
* ALPHA Syntax ALPHA

* (Denotational) Semantics
* Substitution, Normalization, & ...
* Change of Basis (oh no, not again)

l High-Performance Embedded Systems-on-a-Chip — p.7/1.

Consid er the ALPHA program

I High-Performance Embedded Systems-on-a-Chip — p.8/1.

Consid er the ALPHA program

and affine functions 7’ and 7 such that 7/ o T
T (T(2) ==

|
H
D

I High-Performance Embedded Systems-on-a-Chip — p.8/1.

CoB In Alpha

Every occurrence of X (on the rhs of any equation) can be
replaced by X.77.T, without affecting the semantics.

° Introduce a new variable
X' =X.T' = (expr).T’

* Its domain is Pre(Dx, 7"

* Replace every occurrence of the subexpression X.7" in the
program by X’

® Since X is no longer used in the program, drop it, and then
rename the X’ to be X

. High-Performance Embedded Systems-on-a-Chip — p.9/1.

Summary: Three Simple Rules

eplace
* the domain Dy of X by Pre(Dx, T)
* all occurrences of x (on any rhs) by x.7

* compose a 7' dependence at the end of the entire
rhs of the equation of X.

. High-Performance Embedded Systems-on-a-Chip — p.10/1.

Example (Fibon acci again)

changeO' Basi s["Fib. (i ->-1)", "1"]; show]

I High-Performance Embedded Systems-on-a-Chip — p.11/1.

Example (Fibon acci again)

changeO' Basi s["Fib. (i ->-1)", "1"]; show]
system FibSys : {N 1<=N} ()

returns (F : | nt eger);

var Fib : {i | -N<=i<=-1} of integer;
| et

Fib = case

{ili<=2} : 1.(i->);
{i]i>=3} : Fib.(i->1).(i->-1)
+ Fib. (i->1)(i->-2);
esac. (I ->-1);
F=Fib. (i->i)(->N;
tel;

l High-Performance Embedded Systems-on-a-Chip — p.11/1.

Norm alize again

normal i ze[]; show]
system FibSys : {N 1<=N} ()
returns (F : | nt eger);

var Fib : {i | -N<=i<=-1} of integer;
| et
Fib = case

{i|-2<=1} : 1.(i->);

{i|i<=-3} : Fib.(i->+1)

+ Fib. (1->i+2)

esac;
F=Fib.(->N);
tel;

l High-Performance Embedded Systems-on-a-Chip — p.12/1.

Generaliz ed CoB

* T is unimodular (simplest case)

* T is not square (but admits an integral left inverse),

l High-Performance Embedded Systems-on-a-Chip — p.13/1.

Generaliz ed CoB

* T is unimodular (simplest case)

* T is not square (but admits an integral left inverse), eg.
alignment (i — i, 1)

l High-Performance Embedded Systems-on-a-Chip — p.13/1.

Generaliz ed CoB

* T is unimodular (simplest case)

* T is not square (but admits an integral left inverse), eg.
alignment (i — i, 1)

* Can you do even better? What about a transformation
(1i,j — 1,0)

. High-Performance Embedded Systems-on-a-Chip — p.13/1.

Generaliz ed CoB

* T is unimodular (simplest case)
* T is not square (but admits an integral left inverse), eg.
alignment (i — i, 1)

* Can you do even better? What about a transformation
(i,j — i,0) applied to a variable whose domain is
really a line-segment, “embedded” in a 2-D index
space

. High-Performance Embedded Systems-on-a-Chip — p.13/1.

Generaliz ed CoB

* T is unimodular (simplest case)
* T is not square (but admits an integral left inverse), eg.
alignment (i — i, 1)

* Can you do even better? What about a transformation
(i,j — i,0) applied to a variable whose domain is
really a line-segment, “embedded” in a 2-D index
space 7 must admit an integral left inverse, 7' in the
context of the variable X, I.e.,

Ve Dx, T (T(2) ==

. High-Performance Embedded Systems-on-a-Chip — p.13/1.

Why does it work?

® ALPHA domains (finite unions of polyhedra) constitute an abstract
data type (ADT), closed under:
® Intersection
® Union (of finitely many members of the ADT)

® Preimage by (arbitrary) affine functions (the class of
dependences in ALPHA).

® Image by unimodular affine functions (the class of
transformations used for changes of bases).

® The class of transformations (unimodular affine functions) is a
subset of the class of dependences

® the class of dependences is closed under composition

. High-Performance Embedded Systems-on-a-Chip — p.14/1.

	Outline
	{``Cut'' the domain of X with $a^Tz=a_0$}
	Still More Transformations
	Array Notation
	Recipe
	Outline
	Consider the A{small LPHA} program
	CoB in Alpha
	Summary: Three Simple Rules
	Example (Fibonacci again)
	Normalize again
	Generalized CoB
	Why does it work?

