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Operational Semantics of Alpha
(expressions)

� Expressions denote mappings from indices to
values

� Define a function Eval � � ��� � � � 	 
 � Type that
actually (operationally) computes this mapping.

Eval

� ��
 � � �� � ��� Eval

� � � � if � � � ��
 � � �

�

otherwise

� Eval is defined recursively

� Six syntax rules � six cases
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The Eval
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function
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� � ����� �  ! �� � �� "

Eval Eval Eval

Eval
...

Eval if
...

Eval Eval

Eval Eval

Eval EvalVar
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Semantics of Equations

� Equations do not denote mappings from indices to
values

Denotational Semantics: Equations denote
“additions” to a “store of definitions”

Operational Semantics:

Eval = defun EvalVar Eval
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Semantics of programs (systems)

� Denotational Semantics: programs denote
mappings from input variables to output variables

� (strict) Operational Semantics:

1. Read Input Variables
2. Compute (Local) and Output Variables
3. Write Output Variables
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Scanning Polyhedra

� Given a polyhedron

7

� Problem: (generate code to) visit (in lexicographic
order) all the integer points in

7
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Nonstrict Operational Semantics

1. Read Input Variables

2. Write Output Variables (computing only those local
variables that are necessary)

this will yield horribly inefficient code
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Improvement

� Use memoization to avoid recomputation

� Allocate memory, store previously computed
values, and evaluate only (at most) once
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Drawbacks and Improvements

� Main Drawback: Too many context switches –
factor of 5 to 8 for simple examples

Solution: Determine a schedule, and visit the
points in the domains of the variables in that order

Key issues:
How to determine a schedule
How to exploit this to generate code (scanning
unions of polyhedra)
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