
High-Performance Embedded
Systems-on-a-Chip

Lecture 12: Executing Alpha
Sanjay Rajopadhye

Computer Science, Colorado State University

High-Performance Embedded Systems-on-a-Chip – p.1/10

Outline

� Operational Semantics

Scanning polyhedra

Horrendously inefficient code generation

(In)efficient code: allocation memory for domains

Efficient code generation

High-Performance Embedded Systems-on-a-Chip – p.2/10

Outline

� Operational Semantics

� Scanning polyhedra

Horrendously inefficient code generation

(In)efficient code: allocation memory for domains

Efficient code generation

High-Performance Embedded Systems-on-a-Chip – p.2/10

Outline

� Operational Semantics

� Scanning polyhedra

� Horrendously inefficient code generation

(In)efficient code: allocation memory for domains

Efficient code generation

High-Performance Embedded Systems-on-a-Chip – p.2/10

Outline

� Operational Semantics

� Scanning polyhedra

� Horrendously inefficient code generation

� (In)efficient code: allocation memory for domains

Efficient code generation

High-Performance Embedded Systems-on-a-Chip – p.2/10

Outline

� Operational Semantics

� Scanning polyhedra

� Horrendously inefficient code generation

� (In)efficient code: allocation memory for domains

� Efficient code generation

High-Performance Embedded Systems-on-a-Chip – p.2/10

Operational Semantics of Alpha
(expressions)

� Expressions denote mappings from indices to
values

� Define a function Eval � � ��� � � � 	
 � Type that
actually (operationally) computes this mapping.

Eval

� ��
 � � �� � ��� Eval

� � � � if � � � ��
 � � �

�

otherwise

� Eval is defined recursively

� Six syntax rules � six cases

High-Performance Embedded Systems-on-a-Chip – p.3/10

The Eval

�
function

� Eval

� � ����� � ! �� � �� "

Eval Eval Eval

Eval
...

Eval if
...

Eval Eval

Eval Eval

Eval EvalVar

High-Performance Embedded Systems-on-a-Chip – p.4/10

The Eval

�
function

� Eval

� � ����� � ! �� � �� "

� Eval

� � � � # �� � � � $ � � � �� Eval

� � � � # � � � �&% Eval

� � � � $ � � � �

Eval
...

Eval if
...

Eval Eval

Eval Eval

Eval EvalVar

High-Performance Embedded Systems-on-a-Chip – p.4/10

The Eval

�
function

� Eval

� � ����� � ! �� � �� "

� Eval

� � � � # �� � � � $ � � � �� Eval

� � � � # � � � �&% Eval

� � � � $ � � � �

� Eval

� ��'(
*)) � � + �))
 (' � � ��,-.-/-
-/-.-/0

...

Eval

� � � � + � � � � if � � � � � � + � �

...

Eval Eval

Eval Eval

Eval EvalVar

High-Performance Embedded Systems-on-a-Chip – p.4/10

The Eval

�
function

� Eval

� � ����� � ! �� � �� "

� Eval

� � � � # �� � � � $ � � � �� Eval

� � � � # � � � �&% Eval

� � � � $ � � � �

� Eval

� ��'(
*)) � � + �))
 (' � � ��,-.-/-
-/-.-/0

...

Eval

� � � � + � � � � if � � � � � � + � �

...

� Eval

� �21 � � � � � � �� Eval

� � � � �� � �

Eval Eval

Eval EvalVar

High-Performance Embedded Systems-on-a-Chip – p.4/10

The Eval

�
function

� Eval

� � ����� � ! �� � �� "

� Eval

� � � � # �� � � � $ � � � �� Eval

� � � � # � � � �&% Eval

� � � � $ � � � �

� Eval

� ��'(
*)) � � + �))
 (' � � ��,-.-/-
-/-.-/0

...

Eval

� � � � + � � � � if � � � � � � + � �

...

� Eval

� �21 � � � � � � �� Eval

� � � � �� � �

� Eval

� � � � �) 3� � �� Eval

� � � � � � 3 � � � �

Eval EvalVar

High-Performance Embedded Systems-on-a-Chip – p.4/10

The Eval

�
function

� Eval

� � ����� � ! �� � �� "

� Eval

� � � � # �� � � � $ � � � �� Eval

� � � � # � � � �&% Eval

� � � � $ � � � �

� Eval

� ��'(
*)) � � + �))
 (' � � ��,-.-/-
-/-.-/0

...

Eval

� � � � + � � � � if � � � � � � + � �

...

� Eval

� �21 � � � � � � �� Eval

� � � � �� � �

� Eval

� � � � �) 3� � �� Eval

� � � � � � 3 � � � �

� Eval
� � �245(6 � � � �� EvalVar

� � �

High-Performance Embedded Systems-on-a-Chip – p.4/10

Semantics of Equations

� Equations do not denote mappings from indices to
values

Denotational Semantics: Equations denote
“additions” to a “store of definitions”

Operational Semantics:

Eval = defun EvalVar Eval

High-Performance Embedded Systems-on-a-Chip – p.5/10

Semantics of Equations

� Equations do not denote mappings from indices to
values

� Denotational Semantics: Equations denote
“additions” to a “store of definitions”

Operational Semantics:

Eval = defun EvalVar Eval

High-Performance Embedded Systems-on-a-Chip – p.5/10

Semantics of Equations

� Equations do not denote mappings from indices to
values

� Denotational Semantics: Equations denote
“additions” to a “store of definitions”

� Operational Semantics:

Eval = defun EvalVar Eval

High-Performance Embedded Systems-on-a-Chip – p.5/10

Semantics of Equations

� Equations do not denote mappings from indices to
values

� Denotational Semantics: Equations denote
“additions” to a “store of definitions”

� Operational Semantics:

Eval

�245(6 = � ��� � � �� �
defun EvalVar

�

Eval

� � ��� � � � �

High-Performance Embedded Systems-on-a-Chip – p.5/10

Semantics of programs (systems)

� Denotational Semantics: programs denote
mappings from input variables to output variables

� (strict) Operational Semantics:

1. Read Input Variables
2. Compute (Local) and Output Variables
3. Write Output Variables

High-Performance Embedded Systems-on-a-Chip – p.6/10

Scanning Polyhedra

� Given a polyhedron

7

� Problem: (generate code to) visit (in lexicographic
order) all the integer points in

7

High-Performance Embedded Systems-on-a-Chip – p.7/10

Nonstrict Operational Semantics

1. Read Input Variables

2. Write Output Variables (computing only those local
variables that are necessary)

this will yield horribly inefficient code

High-Performance Embedded Systems-on-a-Chip – p.8/10

Nonstrict Operational Semantics

1. Read Input Variables

2. Write Output Variables (computing only those local
variables that are necessary)

this will yield horribly inefficient code

High-Performance Embedded Systems-on-a-Chip – p.8/10

Improvement

� Use memoization to avoid recomputation

� Allocate memory, store previously computed
values, and evaluate only (at most) once

High-Performance Embedded Systems-on-a-Chip – p.9/10

Drawbacks and Improvements

� Main Drawback: Too many context switches –
factor of 5 to 8 for simple examples

Solution: Determine a schedule, and visit the
points in the domains of the variables in that order

Key issues:
How to determine a schedule
How to exploit this to generate code (scanning
unions of polyhedra)

High-Performance Embedded Systems-on-a-Chip – p.10/10

Drawbacks and Improvements

� Main Drawback: Too many context switches –
factor of 5 to 8 for simple examples

� Solution: Determine a schedule, and visit the
points in the domains of the variables in that order

Key issues:
How to determine a schedule
How to exploit this to generate code (scanning
unions of polyhedra)

High-Performance Embedded Systems-on-a-Chip – p.10/10

Drawbacks and Improvements

� Main Drawback: Too many context switches –
factor of 5 to 8 for simple examples

� Solution: Determine a schedule, and visit the
points in the domains of the variables in that order

� Key issues:� How to determine a schedule� How to exploit this to generate code (scanning
unions of polyhedra)

High-Performance Embedded Systems-on-a-Chip – p.10/10

	Outline
	Operational Semantics of Alpha (expressions)
	The Eval $'$ function
	Semantics of Equations
	Semantics of programs (systems)
	Scanning Polyhedra
	Nonstrict Operational Semantics
	Improvement
	Drawbacks and Improvements

