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Abstract

We present a technique for synthesizing systolic architectures from Recurrence
Equations. A class of such equations (Recurrence Equations with Linear
Dependencies) is defined and the problem of mapping such equations onto a two
dimensional architecture is studied. We show that such a mapping is provided by
means of a linear allocation and timing function. An important result is that under
such a mapping the dependencies remain linear. After obtaining a two-dimensional
architecture by applying such a mapping, a systolic array can be derived if the
communication can be spatially and temporally localized. We show that a simple test
consisting of finding the zeroes of a matrix is sufficient to determine whether this
localization can be achieved by pipelining and give a construction that generates the
array when such a pipelining is possible. The technique is illustrated by
autornatically deriving a well known systolic array for factoring a band matrix into
lower and upper triangular factors!.

1. INTRODUCTION

Systolic arrays are a class of architectures that have shown great promise in exploiting the
parallelism available in VLSI (very large scale Integrated circuits). They consist of regular and local
(usually nearest-neighbor) interconnections of a large number of very simple identical cells
(processing elements). They are typically used as special-purpose back-end processors for
computation-intensive problems. A number of systolic architectures have been presented for solving
various problems such as matrix multiplication, L-U decomposition of matrices, solving a sel of
equations, convolution, dynamic programming, ete [1, 7, 10, 11, 12]. In most of these cases, the
designs have been developed largely in an ad-hoc, case by case manner. Recently there has been a
great deal of effort focused on unifying theories for analyzing such circuits [3, 8, 16, 25] and
techniques for their synthesis [2, 5, 6, 13, 14, 15, 17, 18, 20, 23]. In all these approaches, the idea
Is to analyze the program dependency graph and transform it to one that represents a systolic array.
The problem of synthesis is thus a special case of the graph-mapping problem where the objective is
to transform a given graph to an equivalent one that satisfies certain constraints. For systolic array
synthesis there are two major constraints, namely nearest-neighbor communication and
constant-delay interconnections.

The initial specification for the synthesis effort is typically a program consisting of a set of (say n)
nested loops. The indices of each of the loops together with the range over which they vary, define
an n-dimensional domain in Z ™ (Z denotes the set of integers). The computation in the loop body is

performed at every point p in this domain; the usage of variables within it defines the dependencies
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of the point p. For example, if the body contains a statement of the form

ali, 3 k] := 2*b[i, 3+2,k-1]
then the point p = [i, §, K" depends on q = [1, j+2, k- llT. Such a nested loop program can be shown to
be exactly equivalent to a recurrence equation defined on the same domain D. This is the notation
that we shall use as an initial specification.

In most of the earlier work cited above (see [22] for a detailed survey) the underlying assumption is
that the dependencies are uniquely characterized by a finite set, of constant vectors in Z"™ as in the
example above where p-q is a constant vector independent of p, namely [0, -2, 1] *. Other than the
notation used most of these approaches are very similar!. For example, an equivalence between the
approach of Li and Wah [15] and that of Moldovan [18] has been formally proved recently [19]. For
such programs, the recurrence equations that describe them are called Uniform Recurrence
Equations (UREs), and the dependency graph can be shown to be a lattice in Z™ Under these
restrictions the problem of synthesizing a systolic array can be solved by determining an appropriate
affine transformation (i.e., one that can be expressed as a translation, rotation and scaling) of the
original lattice.

We shall now briefly describe the previous approaches, using the notation of Uniform Recurrence
Equations as discussed by Quinton [20]. It is assumed that the function g (corresponding to the
computation in the loop body in other approaches) can be implemented on a single processor and
can be computed in a single "time step”; g thus defines the granularity of the computation. The
design of a systclic array then consists of scheduling the computation on all the points of the domain
on an appropriate array of processors. This can be defined by means of a timing function that
maps every point in the domain D to a positive integer, and an allocation funetion that maps every
point in D to a (linear) array of processors. Quinton gives necessary and sufficient conditions for the
existence of affine timing and allocation functions. He also presents a procedure for determining the
timing function, in the case when the domain is a convex hull.

However, the class of problems expressible as uniform recurrence equations is restrictive and a
large number of interesting proﬁlems cannot be naturally expressed as UREs. The chief reason for
this is the restriction that all the dependency vectors must be constants, independently of the
particular point in the domain. In addition, we have shown elsewhere [22] that many of the
necessary and sufficient conditions for the existence of affine timing functions can always be
satisfied if the computation is "well formed". Thus, UREs are too close to the final architecture to be
a useful "high-level" specification.

In this paper we therefore, propose a more general class of recurrence equations called Recurrence
Equations with Linear Dependence (RELDs). In RELDs, as the name suggests, the dependencies of a
particular point are linear (actually alfine) functions of the point. This paper addresses the problem
of synthesizing systolic arrays from RELDs. As in the case of UREs, our approach is to determine
appropriate timing and allocation functions for the recurrence equation. This defines a mapping of
the original RELD into a processor-time domain, and thus yields an architecture for the problem.
We shall prove that the new dependency structure induced by this mapping is also an RELD. Thus,
unlike UREs the architecture that we obtain may have non-local interconnections. It is therefore
necessary to explicitly pipeline the data flow in the new architecture. Explanation of this two-step
process constitutes the principal thrust of this paper.

In some cases, where the dependencies are not restricted to be constant vectors the method relies on user input or
heuristics to determine appropriate transformations.
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The rest of this paper is organized as follows. In the following section (Sec. 2) we formally define
recurrence equations, UREs and RELDs and introduce some of the notation we shall use later.
Then. in Sections 3 and 4 we discuss how, by selecting appropriate timing and allocation functions,
a (naive) target architeclure is automatically induced. We also discuss the conditions for the
existence of such functions. Then, in Section 5 we motivate the necessity for explicit pipelining by
showing that the architecture induced by the timing and allocation functions does not have systolic
interconnections. We also define explicit pipelining and show that some simple tests on the
dependency matrices are adequate to determine whether pipelining can be performed or not.
Section 6 then summarizes these results by describing a complete synthesis procedure. The
technique is illustrated in (Section 7) by synthesizing the systolic array for a well known example —
LU-decomposition (i.e., factorizing a band matrix into lower and upper diagonal matrices).

2. RECURRENCE EQUATIONS WITH LINEAR DEPENDENCIES

Recurrence equations are a well known tool for expressing a large class of computations. The
computation involves the evaluation of a function f at all points in a domain D. D is a subset of
Euclidean n-space E ™ The recurrence equation specifies how the value of fat p depends on the
value of [ at other points in the domain. Based on these dependencies recurrence equations are
classified as uniform or nonunilorm, one- or multi- dimensional, ete.

Definition 1: A Recurrence Equation over a domain D is defined to be an equation of
the form
fte)y = gtay), flay) ... flg))
where p, € D; gy €.y 1 =1 .. Ef
and g is a single valued function which is strictly dependent on each of it's
arguments.

A system of m Recurrence Equations over a domain D is delined to be a family of m
mutually recursive such equations, where each f is deflned by an equation of the form
above (with each f; being, in general, a function of the all the fs).

Two simple examples are Lhe well known factorial and fibonacei functions which are specified by
the following equations.

{ 1 ifn<o
Jin) = n * fin-1) otherwise
and
1 ifn<1
Sin) ;
Sfin-1) + fin-2) otherwise

These functions are defined on the domain of natural numbers and can therefore be expressed as
linear recurrence equations. Since the value of f at any point n depends on f at some other points
which are at a constant distance {rom n they also belong to a class of recurrence equations called
Uniform Recurrence Equations (UREs). This taxonomy was first proposed by Karp et al [9], and is
formally defined as follows.
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Definition 2: A Recurrence Equation f(p) = g(fig)), fla) --- Slay)) as defined
above, is called a Uniform Recurrence Equation (URE) iff

qy =P - wi,i=l ...k,
where w,'s are constant n-dimensional vectors;

As mentioned earlier, this paper proposes a more general class of computations. This class is
formally defined as follows.

Definition 3; A Recurrence Equation with Linear Dependencies (RELD) is defined as
an equation of the form

fip) = gftap + B;), flap + by ... f(ap + b))

where
p € D;
A, ' s are constant n by n matrices;
b,’ s are constant n- dimensional vectors;
and g Is a single valued function which is strictly dependent on each of it's

arguments.

As we have mentioned above, UREs are too close to a systolic architecture to serve as useful initial
specifications. Many important problems cannot be cleanly described as UREs, and a great deal of
effort has to be spent in "massaging” an initial problem specification into a URE. However, the class
of problems defined by UREs is an important class because every physical systolic array can be
expressed as a URE. To understand intuitively why this is so, consider a two dimensional systolic
array. It has nearest neighbor interconnections and the links have a constant delay assoclated (both
independently of location in the array). Thus if we imagine "snapshots" taken at every time instant
as the computation progresses, we get a three-dimensional dependency structure in a space-time
(x,v,t] domain. Any point p in this domain represents a computation that needs values from other
points that are a uniform distance away independent of p and hence can be described by a URE.

Note that by restricting the dependency matrices A in an RELD to the identity matrices we obtain
a URE. Thus UREs are merely a subset of RELDs, and one way of viewing some of the results
presented here is as a formalization of the ad hoc "massaging” of the initial specification that is
required in some other approaches [4, 6]. As an example of RELDs, consider the dynamic
programming problem as applied to optimum parenthesization of a string. A systolic architecture for
this has been described by Kung et al [7]. The problem is specified as follows. Given a string of n
elements the minimum cost of parenthesizing substring i through j is given by the following.

Cig = 11<nl£12j () + O ) + wyy and Cp1e1 = Wiisl

As expressed above, this specification is clearly not even a recurrence equation (let alone a URE or
a RELD) since the number of values e that a particular ¢;; depends upon is not constant but equal
to j-i-1. However, by introducing an additional "accumulation index", and expressing the
computation as an iteration we can obtain an RELD that performs the same computation as follows.
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c(l, n) = f(1,n, 1) where f(i, j, k) is defined as

( W, f ji=1
|
" “, . k.+1) i =
| w; ; + min (f[i. i+{. 1)l+f[i+k,j, l]} i k=1
T = { . if 2%k >
S0, 4, k+1)
IL Ty ( S, 14k, 1)]+f(i+k. i1 ) othenwise

Here, the value of fat (i].k) depends on its value at three other points, namely (i,j.k+1), (i,i+k,1)
and (i+k,j,1). Thus the dependencies are given by

{1,0, o} H {1, 0, o} ﬂ [1, 0, 1} m
A;=10,1,0] b,;=0} = 1,0, 1| Bs =0 Ay=10,1,0 by)=|0
Sloen LY *Tleasl "2T|S *Tloool YL
3. TIMING FUNCTIONS FOR RELDs

We shall now investigate how the computation specified by an RELD over a domain D can he
"scheduled." As mentioned earlier, this is done by defining a timing function ¢ that maps every point
in D to a positive integer. Accordingly t (p) is interpreted as the time instant at which fp)is
computed. The [ollowing statement is thus obvious from the definition of the dependency relation
(and the fact that the relation induces a partial order on the points in the domain).

Remark 1: A function t will be a timing function for a RELD iff

() YpeD t(p>0
and () Ype D tlp)=> L(Ajp + bj)
forj =1, 2 ... mthat satisfy Ajp - bj e D

Note that we consider the boundary points as belonging to the domain, so the second condition is
correctly restricted only to those points that explicitly depend on other points in the domain. We
also have the following more restrictive case where we only have a sulflicient condition.

Remark 2: A function t will be a timing function_for a RELD if

(i) vpeD t(p)>0
and (i) Ype D t(p]>.t(fﬁp+bj)

We have shown elsewhere [22] that a systolic architeclure cannot be synthesized {rom an RELD
that does not admit an affine timing {unction. Therefore, we shall henceforth restrict our attention
merely to ATFs,

Definition 1: An affine timing functions is defined as
)= )\,tr P+«
where

A, is a vector over the integers Z1, and « is an integer constant.

3.1. Timing Functions for Convex Hulls

We also consider a special class of domains called convex hulls. Such domains are formed by the
intersection in hyperspace of a number of half-hyperspaces. Each such hyperspace is defined by a
bounding hyperplane, i.e., an inequality of the form
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T
o

U * x;>¢C

It is well known [24] that such a domain can be described by a set of unique vertices V and a set
of rays R that are unique up to scalar multiples. This means that if such a domain has m vertices
(also called basis vectors), it can been shown that any point p in the domain can be uniquely
expressed as the sum of a positive combination! of the rays and a convex combination of the

vertices. Thus
m m
= ¥ (cp;) where ¢,z 0;and ¥ ¢;=1
=1 i=1

We now present a theorem that gives us sufficient conditions for the existence of an affine timing

function.

Theorem 1: For an RELD defined by the dependencies {Aj b, ]] -1, ..., xover adomain D
defined by vertices V = [v;, ..., v ) and rays R = (r;, ..., rj}; an affine function t (p)
specified by [A, o] is a valid timing function for the RELD if the following are satisfied

{. VuyeV XTui+a>O

. VreR lTri‘—:O

. VuyeV 7\.U>l(}—\jv+b) FEL .0 K
tv.. VreR Xr>7xﬁjr F=EE . K

Proof: We know that [A, o] will be a valid ATF if it satisfies the two conditions
of Remark . Also, it has been shown elsewhere (see [22]) Lemma 2. 1] that the
first condition can be satisfied iff

) VyeV ?\.TUi+U.>0
and (i) VreR A >0

Hence, the result follows directly if we can demonstrate that

Vpr—:Dt(p):-t(A]p+b) forj=1, ...,k

Le., ?Lp>l[%p+b]
Since D is a convex hull we know that any point p can be written as

m l
p=£§1 (civi)+i)=31 (a;r;) .1

m
where ¢,20; q;20;and ¥ ¢;= fl
=l

Also since we know that A" v; > A" Ay v +blfori=1, ... m, we can multiply
each such inequality by the ¢/s above and add up, yielding the following.

1L T T
t§1 Aoy >E A [1’5:| v+ b.]

i=1
m m -
E, G A Ay + .H L ¢ A by
=\ b, 3
- 2
AJ Z cu; + bJ [_% ol 5.2
513 X; Xy ... x, are points in R", then EL {ap) is said to be a positive combination if a are nonnegative real numbers. If

in addition Z; ; @71 18 true then it is called a convex combination.
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Similarly, since we know that i > AT ‘bﬁ fordiss Ly s

! T ! T
E,I a kT >i§1 a; A [Aj rl

l
Adding up Equations 1.2 and 1.3 and substituting from Equation 1.1 we get
A'p > 7LT(Ajp +by) i

Notice that this does not give us necessary conditions for existence of ATFs, merely sufficient
conditions. It is also clear from the above theorem that conditions for determining affine timing
functions for RELDs is not as straightforward as for UREs. To understand intuitively why this is so
consider a URE defined over a convex hull with a ray r. For any two points p and p + ur the distance
between the points themselves, is exactly equal to the distance between the points that they depend
on, since p depends on p + w; and p + ur depends on p + pr + w;. Thus for such a URE to have an
affine timing function, the condition that A and o must satisfy is that R (p +w) + o] - [?LT P + wr+ol
must be positive. Since the dependencies are uniform, this distance is independent of p. In the case
of RELDs however, we must ensure that

A p>L[Ap+b]
ie., 2 [(1-A)p+bl>0

Clearly, this is not independent of p, and in a domain with a ray r we must ensure that it will be
true for p-+ ur for arbitrarily large r. The fourth condition in the previous theorem ensures exactly
this.

4. ALLOCATION FUNCTIONS

Allocation functions are a mapping of the problem domain D to a new (processor) domain D,
Intuitively, an allocation function may be viewed as defining the processor a (p) in D, at which the
computations denoted by point p in D is performed. The processor domain D, is restricted to be
two-dimensional since we are dealing with systolic arrays (linear systolic arrays are merely a special
case of this), and each processor is connected to a nearest neighbor according to a particular
interconnection scheme. The interconnection scheme is one of two possible ones — to four immediate
neighbors, corresponding to mesh arrays (and linear for the one-dimensional case); and to six
neighbors, corresponding to hexagonal arrays. As in the earlier approaches, we restrict our attention
to linear allocation functions, which can be defined as

a(p) =[x yl=N'\p + 0 A'yp + o

Such a function thus corresponds to a geometric projection of the original domain. By choosing
the direction of projection to be along the ray of D (remember that D is restricted to have at most one
ray) it is guaranteed that the projection will be finite, Also if u is a vector (representing the direction
of projection) then the only additional condition required to ensure that it determines a valid
allocation is that A'u # 0. This constraint ensures that the timing and allocation functions are free
of conflict i.e.,

tlpl=tlgQnrnalPl=algg=p=q
This ensures that no two computations are scheduled on the same processor at the same time.

It is clear that the timing and allocation functions are not unique, and in many instances there
are optimality criteria that guide the choice of these functions. One such criterion, in addition to
those discussed by Quinton, is the locality of interconnections. The reason one does not find a
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uniform treatment of this aspect in the literature is that it is still a matter of opinion in the research
community whether an architecture with (say) eight nearest-neighbor interconnections is considered
a gystolic array. Some researchers view this as outside the scope of systolic arrays because the
architecture does not tesselate on a plane, while others view any regular (i.e., repeated)
interconnection as appropriate. Each of these viewpoints can be thought of as optimality constraints
on the allocation function. The constraint is merely that the projection of each of the dependencies
must be a "permissible" interconnection, with a higher cost (which may be infinite, depending on the
view that is chosen) for non-tesselating interconnections.

We can view the timing and allocation functions as performing a transformation S of the original
problem specification {rom an n-dimensional domain to a three-dimensional one. Also, by specifying
that one of the axes is the "ime axis” we have obtained a clear separation of two important facets of
an architecture, namely space and time. Henceforth, we shall refer to this space as the [x,y,t] space.
If [A, o] represents the affine transformation induced by the timing function [A, oy] and the allocation
function {[A,, o, A, o]} we can write [A, o] as follows.

rlix-l ax
kr|lzyi, andotraxlay|
= Ler,

We see that the following remark is true.

Remark 1: If A is nonsingular then there is no conflict between the timing and allocation
functions.

This is so because in this case A has an inverse, and thus corresponding to any point p in the
[x,v,t] space (l.e., on any processor [x,y] at any instant t) there is a unique point (i.e., a unique
computation) in the original RELD.

5. DEPENDENCIES IN THE SPACE-TIME DOMAIN - EXPLICIT PIPELINING

As mentioned above, the timing and allocation functions described in the previous two sections
can be viewed as a transformation that maps the original RELD to a new dependency structure in
the space-time domain. The following theorem defines the properties of this new dependency
structure.

Theorem 2: For any RELD defined by IAJ. bjlj=1“m the new dependency structure
induced by the timing and allocation functions described by [A, o] is also an RELD if A has
an inverse A

Proof:

We denote by S the transformation induced by the timing and allocation
functions [A, o, i.e.,

.4
M = S(p) = Ap+o
17

Since A has an inverse, A~ the computation of f at any point p in the original
domain can be expressed as a computation of another function f at [x.y.t|T as
follows
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fpy = fisx, v, £1)

g (a,S %, y, t] + b)), fl A,S87(x, v, t] + by,
f(AkS'l[x, vy, t1 + by)
)

- gU’(k(AIS‘l[x, v, tl +'51) + o),

FOCRS X, v, t] +b,) + ),
coe POMAST %, v, €] + B + )

_f,[xr Yo t]

l

)
But since p = Shlix, v, t] = l_l{[x, v, t1T - a}, we have
?L(AJS-l[x, v, t] +b) + @ =A@\ ([x, y, t1T - @} + by +a

= o =
=AAjA {}—MA]lawubj) + o

[l -

Since Aa.L " is a constant 3x3 matrix and AR o+ by) + alis a constant
3-vector this represents an RELD in the [x.y.t] space. |

Since the proof of this theorem is constructive, in we can use the above result to determine the
dependencies in the new RELD. We also have the following corollary.

Corollary 3: For any URE, the fransformation induced by affine timing and allocaiion
Junctions, leaves the dependency structure uniform if the transformation mairix L has an
inverse.

Proof: Since a URE is an RELD with the dependency matrix A, being the
identity matrix I, the transformation yields a new RELD where the corresponding
dependency is

AMAT =AIA =1
: |

We thus see that the timing and allocation functions directly define a two dimensional processor
architecture. However, this nalve architecture is not necessarily systolic, since the communication
is not local (in fact, it may not even be at a constant distance away). This motivates the second step
of the synthesis procedure, namely explicitly pipelining the dependencies in this space-time domain.
A dependency of a point [x, y, tiT in this domain indicates that at time instant t, the processor [x,y]
will need the value that the processor [x'y] computed at time instant t, where x,y.t]T is
Ay eyt + b';. The following theorem describes the underlying idea, that permits us to restructure
the dependencies in the RELD.

Theorem 4 Pipelining Theorem: A particular dependency [Aj, l}.] of an RELD in the [x,y.t]
domain can be made uniform if the dependency matrix A; has a nontrivial zero p.

Proof: Consider an RELD defined on the same [x,y,t] domain as [ollows.

Sy = i), foip)]
where fi(p) = g (f{(A;p + b)), f1(A,p + b,)
2o +p) oo (B + b))
and  fo(p) = folp + p)
Il this RELD is restricted to have the same boundaries as the original one,
then it also has the same dependency structure except that the jth dependency

is now uniform. For it to be computationally equivalent to the original one, the
following must hold.

J2(p + p) = fi(a;p + by) (1)
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But, the computation of fat point [p + p] yields the following.

Site +p) =g ;2 (p +p) + Dby, f1(A(p +p) + by)
Sfotp + 2 p) ... f1Ba (p P) + b))
and

Jep +p) = falp + 2 p)
And thus for equivalency with the original RELD

JSotp + p) = Jfolp + 2 p)

= fi{a{e + p) + by) 2

Since this must be true, regardless of the functions f, f; and f, we have, from
Equations (1) and (2)

]

A,{p + P) + by = Ap + by

a,p=0

Thus for the new Uniform RE to be computationally equivalent to the original
one p has to be a zero of the dependency matrix. ]

We also have the following corollary, whose proof follows directly from the previous theorem.

Corollary 5: If all the dependericy matrices Aj have zeroes of the form [a, b, -k]T. where k
is a positive integer and [a, b] is one of [0, 0] [£1, O], [0, 1] or [+1, +1], the result of making
the dependencies uniform yields a structure with systolic interconnections.

Proof: The proof is cbvious, since it is the vector p that determines the point
in the [x, y, t] space that any point depends on. If p has the form described
above, then we see that the communication is local, both temporally and
spatially, which is exactly what is required for a systolic implementation. i

6. OUTLINE OF THE SYNTHESIS PROCEDURE

Before we present a complete synthesis procedure we shall prove a theorem which demonstrates
that the two steps involved, namely determination of appropriate timing and allocation functions,
and explicit pipelining may be performed independently.

Theorem 6: [f the matrix L determining the timing and allocation functions has an
inverse A" then there exists a one-to-one correspondence between every pipelining
dependency p in the space-time domain, and an equivalent pipelining dependency p’ in the
original RELD.

Proof: We know from Theorem 5 that for a timing-function-allocation-
function transformation specified by [, o] the new dependency structure is also

an RELD with [AMAA ", o - Af k'la+b)]=1__k as the new dependencies. The proof
then follows directly from a well known result from linear algebra theory that for

any singular matrix A, p is a solution for the equation A A A “x =0 if and only if
Ap is a solution to Ax = 0.

As a result we shall henceforth consider, without any loss of generality, that all the pipelining
operations are performed on the original RELD. The pipelining theorem gives us an important
criterion lo determine whether a given RELD can be pipelined. Intuitively, this can be explained as
follows. Consider a point p in D that depends on another point q given by Ap + bj. We assume ([or
the purpose of this paper) that the matrix A has rank n-1 and hence the solution space of Ax = 0is
a straight line!. This line has p as a basis, and intersects the domain boundary at a point p, (which

'This ean be generalized (see [21, 22]) to deal with dependency matrices with other ranks but is beyond the scope of this

NnAanNer
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in general, is a function of p and D). The pipelining theorem states that this line is exactly the set of
all points in D that depend on [Ajp, bJ] and hence the linear dependency [Aj, bj] may be replaced by
the uniform dependency p. However, this is possible only if the point g is also in the null space of
Ay Le., it is on the line with slope p passing through p. This is expressed as the following.

Necessary Condition for Direct Pipelining: A linear dependency [Aj, bJ] of an RELD can be
directly pipelined if Aj(Ajp + bJ - p,) is zero (for all points p in D).

We also see that the basis vectar p is unique up to sign. Thus, the sign of p is chosen such that
the resulting basis ylelds a dependency that is consistent with the timing function, i.e., A,p must be
positive. The synthesis procedure is thus described as follows.

1. Specify an RELD for the problem.

2. Determine a valid ATF [A, o] for the RELD. Initially choose the optimal (i.e., the
"fastest”) ATF,

3. Determine the null spaces of each of the dependencies of the RELD, and choose
A-consistent basis sets for each of them.

4, Test for the necessary condition for direct pipelining of each of the dependencies, and if
it is satisfied, determine the URE for the problem (which will still have [A, o] as a valid
ATF).

5. Choose an allocation function and derive the final architecture. This step is exactly
identical to corresponding step when the starting point was a URE, except that the
allocation function should now map all the (now uniform) dependencies to neighboring
processors (including the newly intreduced pipelining dependencies).

7. APPLICATION OF THE TECHNIGQUE TO LU DECOMPOSITION

We shall now illustrate the technique presented above by means of an example. Consider the
problem of factorizing a band matrix into its lower and upper triangular parts (LU decomposition) as
defined in Figure 7-1.

rall' Aypr 833 - E‘ln1 [1 0, ... 0‘| E-uur Uigé B33 =owe um-L

Bo1r 8ppr 8oy s a1n| Logr Lyawe 0 Q, Ussy Uz «w. Uy |

By Sgpe Bgg «c v gyl 1131, gy U = 0l [y By . tigg e Bgy |
*

agir Appr Any - .- J or Lagr e T 0. B O s e

Figure 7-1: LU Decomposition of a matrix

As described by Kung and Leiserson [11] the natural recurrence that describes this computation
is the following!.

a(i, 3, 0) = a
a(i, j, k) = ati, 3, k-1) - ;I_ikukj
where
0 e |
Ly ™ 12 i i=j
a(i, 3, j--l)/ujj if 1>
and
0 LE I
ujy -
ally; js 1-1) fE A5

, 'We have slightly altered the third subscript to have the initial values available at k=0 rather than k=1
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We now illusirate the different steps involved in synthesizing a systolic array for this problem.

7.1, Formulating an RELD for the problem

The domain of the above recurrences is the pyramid bounded by the points (1,1,0), (1,n,0), (n,1.,0),
(n,n,0) and (n,n,n). Its bounding planesare k =0;1=mn;j =n; j =k andi= k. This expression is not
an RELD because of the presence of the subscripted ;) and uy ; terms. To express this as an RELD
we can use one of two alternatives. First, by straightforward algebraic manipulation we can
completely eliminate the lj; and the v, terms from the three equations above. This yields the

following RELD.

1

a(i, j, k) = a(i, 3, k-1) - af{i, k, k-1) - a(k, 3, k-1)/a(k, k, k-1)

G O ik 0
and Ay = 0 1- 'O by = 0
8, 0, .1 -1

Figure 7-2: Dependency Structure and Domain of the LU-Decomposition Recurrences

Alternatively, we may view the function f computed at each point p = (1,j,kK) in the domain as a
tuple of two elements. The first of these is the value of a(l,j.k) and the second element is 1(i,j,k), with




JUU

1 being meaningful only at the j = k+1 boundary!. The RELD for this computation then becomes
f(ir jr k) = [ali, jl . l(ir jr k)]

where

ati, 3, 0) = aij

atiy; 9, k) = ati, j, k=1) = 1(i, k, k-1)a(ky 3 k=1)
and

1(i, j, k) = if 3§ = k+1 then a(i, J, ¥) faity: 3 R

We see that the second alternative is preferable since it does not involve any redundant
computation of the 1(i,j, k) values. However, it contains what appears to be a cyclic dependency, since
the value of (a part of) f(i, j, k) (the 1(i, j, k) part) depends on f (1, j. k) (actually, only its a(i, j, k) part).
Hence, as expressed above this RELD cannot have a timing function. However, we can easily modify
it by extending the domain to also include the j = k plane, and letting f{i, §, k) on this plane being
1(i, i, k). This yiclds the following RELD

[ &y if ko= 0
fti, 3, k) = if(i,j.k—l;/f(k,j,k—u if k = 3
i, d,k-1) = fid, k. k) *f(k, 3, k-1) otherwise

This is the RELD that we shall use as the starting point of the mapping procedure. It must be
emphasized that this choice of the initial RELD is not a limitation of the technique. In fact, by
applying the mapping procedure to the first RELD we obtain an architecture which is very similar to
the Kung-Leiserson array except that each processor performs a division (as expected) and depends
on four input values. Figure 7-2 presents a pictorial view of the domain and the individual
dependencies, and also the values of the A] matrices and the bj vectors.

7.2. Determining the allocation and timing functions

In order to synthesize a systolic array from this RELD we must first determine timing and
allocation functions for it. Let [JLTt | o] = [a, b, ¢ | d] be an affine timing function. Then it must
satisfy the following constraints because of the dependencies of the RELD.

ai + bj +ck >ai + bj + ¢clk-1) e, © >0
ai + bj + ¢k > ai + bk + cl{k-1) i.e. b(j~k) + ¢ > 0
ai + bj -+ €k S ak + by £ ¢ (k=1) i.e. a(i-k) + c > 0

Since our domain is a convex hull we can use Theorem 1 to determine the conditions for the
existence of an affine timing function. This yields a set oof inequalities that determie the space of all
possible timing functions, and we can choose the following as our timing function.

t(ir jpk) e i+j+k

Since the allocation function a (1,j,k) must not in conflict with the timing function, we can view
a (i,j.k) as a projection of the original domain, that is non-parallel to the timing function. We
therefore choose the following allocation function.

a(irjlk) = [i—k, j_'k]

It is easy to see that this choice of allocation and timing functions are free of conflict as [ollows.
Let [i,j,k] and [p.q,r] be two peints that map onto the same point in the [x,y,t] domain. Then
i+j+k=p+q+r

i-k =p-T
and j-k =q-r
Hence i+j-2k=p+q-2r

1Strictly speaking, f(p) should be a triple [a(p), l(p), ulp)l, but the third clement, u(i,j,k) is exactly equal to the corresponding
alt,j,k) and we may therefore ignore it



501

Subtracting this from the first equation yields 3k = 3r; i.e., k=r. Substituting this in the secend
and third equations yields i = p and j = q. Thus the two points are identical. We thus have

e Q=1 -1 1 L1y 2y-1 =
A =10, 1,-1|, and hence A = = 1,-1, 2| Also, = 0
Ty Ty 2 1,-1,-1

7.3. Pipelining in the processor-time domain
We can then use Theorem 5 to determine the new dependencies in the processor-time domain as

follows.

o 1, 0, 0O _ 1
A" = A,A =] 0, 1, 0| andsince @ = 0, by’ = Ab; =| 1

0; 0y 1 =1
Similarly
1y G 0 0 0, 0, 0O 1
A, =| 0, 0, 0}, b,=| 0| and &y =|0, 1, 0|, by =| 1}
i 0,-1, 1 0 -1, 0, 1 =1

We see that although the first dependency has remained uniform under this transformation,
neither Ay’ nor Ay’ has been reduced to the identity matrix. However, since both [A,'l and |A;5’'l are
zero we can apply Theorem 4 in order to pipeline in this new structure. this requires us to solve

A,'x =0 (and correspondingly A;' x = 0)
and yields [-k, O, k|" (and [0, -k, -k]) respectively as a solution. We see that by choosing k to be 1,
both the new dependencies [-1, O —1]T and [0, -1 -1]T are A-consistent any processor [x, y] can obtain
the required values from processors [x-1, y] and [x, y-1] over links of unit delays. Using this
pipelining structure yields the architecture shown in Fig 7-3 below, which is identical to the one
described by Kung and Leiserson.

8. CONCLUSIONS

We have presented a technique for designing systolic arrays from an Initial specification which is
in the form of a Recurrence Equation with Linear Dependencies. The class of problems that our
technique can analyze is a superset of that covered by earlier (problems that had a constant
dependency structure). For such a generalized class of initial specifications we have shown that
appropriate choice of affine timing and allocation functions yields a target architecture. However, we
have also shown that this architecture does not have nearest-neighbor interconnections and
constant delays, and is thus not systolic. We have presented a technique called explicit pipelining
by which the dependencies can be made uniform. In this paper, where the primary intention was to
introduce RELDs and the idea of explicit pipelining, we have considered a somewhat restrictive form
of pipelining, namely direct pipelining. In [22, 21] these ideas are presented in greater detail and
we discuss techniques for synthesizing systolic arrays which have time-dependent data flow that is
governed by control signals in the array.

Recently (in [5, 4]) Chen has presented an inductive technique to derive systolic architectures from
what are defined as First Order Recursion Equations (FOREQs). We can show that these are merely
a subset of Uniform Recurrence Equations with additional constraints specifying that the
dependencies must be local in addition to being constant. Thus the class of problems that can be
designed is restrictive, and most of the effort is spent in "massaging” the original problem
specification into a FOREQ. Chen (in [4]) has presented a new architecture for LU-Decomposition,
which is one and a half times faster than the one designed by Kung and Leiserson. It is our
conjecture that merely by an appropriate choice of timing and allocation functions we should be able
to derive this architecture as well.
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Figure 7-3: Derived Architecture for LU Decomposition
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