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Prelude 

CS560 Lecture Parallelism Review 2 

Parallelism Review 

Announcements  
–  The readings marked “Read:” are required. 
–  The readings marked “Other resources:” are NOT required reading but 

more for your reference. 

Today 
–  Using OpenMP on the veges and on the Cray 
–  OpenMP 

–  for loops 
–  reductions 

–  Concepts: speedup, isoefficiency, critical path, work and span, etc. 
–  Using Tau to profile performance on the veges and the Cray 

                       



Using OpenMP on the veges (see Resources page on website) 
  <Demo, see class video> 
  Log into a vege (http://www.cs.colostate.edu/~info/machines) 
  Get the tar ball and unpack it 
–  wget 
http://www.cs.colostate.edu/~cs560/Spring2012/CodeExamples/
Mandel.tgz!

–  tar xzvf Mandel.tgz!

  View the README file for compilation and execution directions 
–  gcc –fopenmp mandel.c mytimer.c ppm.c!
–  setenv OMP_NUM_THREADS 8 (for csh and tcsh users)!
–  ./a.out!

  View the output 
–  display mandel.ppm!

  Play around with parameters 
–  export OMP_NUM_THREADS=8 (for sh and bash users)!
–  ./a.out -1.0 -1.0 1 1 500    // just black, others?!
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Using OpenMP on the Cray (see Resources page on website) 
  <Demo, see class video> 
  Log into cray 
–  ssh cray2.colostate.edu!
–  cd lustrefs  

  Get the tar ball and unpack it 
–  wget 
http://www.cs.colostate.edu/~cs560/Spring2012/CodeExamples/
Mandel.tgz!

–  tar xzvf Mandel.tgz!

  View the README file for compilation and execution directions 
–  cc mandel.c mytimer.c ppm.c!
–  export OMP_NUM_THREADS=24!
–  aprun –d24 ./a.out!

  View the output by copying file from cray to linux box 
–  scp mandel.ppm carrot.cs.colostate.edu:/s/parsons/c/fac/
mstrout/!

–  On CS machines: display mandel.ppm &!
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OpenMP Constructs I 
  <Demo, showing constructs in mandel.c including gettimeofday()> 
  Header file 

–  #include <omp.h> 
–  Notice the #ifdef _OpenMP in the mandel.c example 

  Parallel region 
–  #pragma omp parallel {  } 
–  Each thread runs a copy of the code. 
–  Unless specified private, variables are shared between threads. 

  For loop 
–  #pragma omp for 
–  If the following for loop is within a parallel region, then iterations of the 

loop are executed in parallel. 
–  #pragma omp parallel for  // creates a parallel region for the for loop  
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OpenMP Constructs II 

  Reduction 
–  Functions/operators that are associative and commutative can be executed 

in any order. 
–  Example:  

–  min(a,b,c) = min(a, min(b,c)) = min(min(a,b), c) 
–  min(a,b,c) = min(c, min(b,a)) = min(b, min(c,a)) 

  Reductions in OpenMP 
–  #pragma omp parallel for reduction(+:sum) 
–  Each thread gets a copy of of the reduction variable (e.g., sum) to execute 

that thread’s set of iterations. 
–  The reduction operator is applied to all of the private reduction variables 

to get one result in the shared reduction variable. 
  Reduction Example (see the Resources page on website) 

–  <Demo reduction example on mac> 
–  <Draw the computation to illustrate the possible parallel schedules> 
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Parallel Performance Metrics 

  Speedup 
  exec time for efficient serial computation on problem size N 
  exectime for parallel version of computation on problem size N 
  with P processors 
   
  speedup is the serial exec time divided by the parallel exec time 

  Efficiency 
  efficiency is the percentage of all the processing power that is being used 
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Speedup and Efficiency of the Mandel Example 
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Amdahl’s Law 

  How fast can we go? 
–  Assume that there is always some portion of the computation that is serial. 
–  The best we can do for speedup is 

–  Where F is the fraction of the computation that is parallel and            is the 
possible speedup for that fraction. 

–  Consequences: what if only 50% of the computation is parallelizable?  
90%? 
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Scaling 

  Efficiency measures scaling 
–  100% efficiency due to linear speedup is ideal, but not realistic. 
–  Strong scaling looks at efficiency as the problem size stays the same and 

the number of processors increases. 

–  Weak scaling keeps the problem size per processor the same, but 
increases the overall workload as the number of processors increase. 
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Profiling Performance in Parallel Programs 
  Various tools 

–  HPCToolkit, TAU, CrayPat, … 
  Using TAU on the Cray 

–  Working on getting this installed on Cray and veges … 
–  Put following in source code 
#include <Profile/Profiler.h>!
TAU_PROFILE_TIMER(mt,"main()”,"int (int, char **)”,TAU_DEFAULT);!
TAU_PROFILE_SET_NODE(0);!
TAU_PROFILE_START(mt);!
TAU_PROFILE_TIMER(pt, "Parallel Region", " " , TAU_DEFAULT);!
TAU_PROFILE_START(pt);!
…!
TAU_PROFILE_STOP(pt);!
TAU_PROFILE_STOP(mt);!

  Then execute, which will create profile files and use “paraprof .” to view!
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TAU Profile of mandel on the Cray 

  <Demo, go look at code again to understand variability> 
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Important Concepts 

  Parallel Computation as a DAG (directed acyclic graph) 

  Work 
–  The total amount of time for all of the tasks assuming we just add up the 

time for all the instructions per task. 
–  Let T_1 = work and T_P be the fastest parallel execution on P processors. 
–  The following bound holds: 

  Span, or Critical Path 
–  The longest path in terms of instructions in the DAG. 
–  Fastest parallel execution given infinite processors is span. 
–  Now we have another bound for the fastest parallel execution. 
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Load Balancing 

  Problem 
–  Computing each pixel in the mandelbrot set can take a different number of 

iterations of the while loop. 
–  Default scheduling for OpenMP is implementation independent but 

probably evenly divides iterations between processors. 

  Possible solution, OpenMP scheduling clauses 
–  #pragma omp for schedule(type [, chunk]) 
–  type 

–  static, iterations divided into pieces of size chunk and chunks are 
evenly divided among threads 

–  dynamic, iterations divided into pieces of size chunk and 
dynamically scheduled on threads 

–  … see tutorial for others 
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Performance Profile of mandel on Cray using DYNAMIC 
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Improvements to Speedup and Efficiency (Mandel) 
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Concepts 

  OpenMP 
–  Parallel regions 
–  Private variables 
–  For loops 
–  Reductions 
–  Scheduling the for loop 

  Performance Analysis for Parallelism 
–  Performance Profiling Tools: time command, gettimeofday(), Tau 
–  Speedup and efficiency 
–  Amdahl’s law, isoefficiency, weak scaling, strong scaling 
–  Critical path, work, and span 
–  Load balancing 
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Next Time 

  Reading 
–  Roofline paper 

  Homework 
–  HW0 is due Wednesday 

  Lecture 
–  Complexity of Current and Future Computer Architectures 
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Terms (Definitely know these terms)  

  Parallelism terms 
–  Speedup and efficiency 
–  Amdahl’s law 
–  Isoefficiency (will cover next week) 
–  Critical Path 
–  Work and Span 

  Performance terms 
–  MFLOPS – millions of floating point operations per second 
–  Load balancing 
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Some Thoughts on Grad School 

  Goals 
–  learn how to learn a subject in depth 
–  learn how to organize a project, execute it, and write about it 

  Iterate through the following: 
–  read the background material 
–  try some examples 
–  ask lots of questions 
–  repeat 

  You will have too much to do! 
–  learn to prioritize 
–  it is not possible to read ALL of the background material 
–  spend 2+ hours of dedicated time EACH day on each class/project 
–  have fun and learn a ton! 



Isoefficiency 
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