
CS560 Lecture Parallelism Review 1

Prelude

CS560 Lecture Parallelism Review 2

Parallelism Review

Announcements
–  The readings marked “Read:” are required.
–  The readings marked “Other resources:” are NOT required reading but

more for your reference.

Today
–  Using OpenMP on the veges and on the Cray
–  OpenMP

–  for loops
–  reductions

–  Concepts: speedup, isoefficiency, critical path, work and span, etc.
–  Using Tau to profile performance on the veges and the Cray

  

Using OpenMP on the veges (see Resources page on website)
  <Demo, see class video>
  Log into a vege (http://www.cs.colostate.edu/~info/machines)
  Get the tar ball and unpack it
–  wget
http://www.cs.colostate.edu/~cs560/Spring2012/CodeExamples/
Mandel.tgz!

–  tar xzvf Mandel.tgz!

  View the README file for compilation and execution directions
–  gcc –fopenmp mandel.c mytimer.c ppm.c!
–  setenv OMP_NUM_THREADS 8 (for csh and tcsh users)!
–  ./a.out!

  View the output
–  display mandel.ppm!

  Play around with parameters
–  export OMP_NUM_THREADS=8 (for sh and bash users)!
–  ./a.out -1.0 -1.0 1 1 500 // just black, others?!

CS560 Lecture Parallelism Review 3

Using OpenMP on the Cray (see Resources page on website)
  <Demo, see class video>
  Log into cray
–  ssh cray2.colostate.edu!
–  cd lustrefs

  Get the tar ball and unpack it
–  wget
http://www.cs.colostate.edu/~cs560/Spring2012/CodeExamples/
Mandel.tgz!

–  tar xzvf Mandel.tgz!

  View the README file for compilation and execution directions
–  cc mandel.c mytimer.c ppm.c!
–  export OMP_NUM_THREADS=24!
–  aprun –d24 ./a.out!

  View the output by copying file from cray to linux box
–  scp mandel.ppm carrot.cs.colostate.edu:/s/parsons/c/fac/
mstrout/!

–  On CS machines: display mandel.ppm &!

CS560 Lecture Parallelism Review 4

OpenMP Constructs I
  <Demo, showing constructs in mandel.c including gettimeofday()>
  Header file

–  #include <omp.h>
–  Notice the #ifdef _OpenMP in the mandel.c example

  Parallel region
–  #pragma omp parallel { }
–  Each thread runs a copy of the code.
–  Unless specified private, variables are shared between threads.

  For loop
–  #pragma omp for
–  If the following for loop is within a parallel region, then iterations of the

loop are executed in parallel.
–  #pragma omp parallel for // creates a parallel region for the for loop

CS560 Lecture Parallelism Review 5

OpenMP Constructs II

  Reduction
–  Functions/operators that are associative and commutative can be executed

in any order.
–  Example:

–  min(a,b,c) = min(a, min(b,c)) = min(min(a,b), c)
–  min(a,b,c) = min(c, min(b,a)) = min(b, min(c,a))

  Reductions in OpenMP
–  #pragma omp parallel for reduction(+:sum)
–  Each thread gets a copy of of the reduction variable (e.g., sum) to execute

that thread’s set of iterations.
–  The reduction operator is applied to all of the private reduction variables

to get one result in the shared reduction variable.
  Reduction Example (see the Resources page on website)

–  <Demo reduction example on mac>
–  <Draw the computation to illustrate the possible parallel schedules>

CS560 Lecture Parallelism Review 6

Parallel Performance Metrics

  Speedup
 exec time for efficient serial computation on problem size N
 exectime for parallel version of computation on problem size N
 with P processors

 speedup is the serial exec time divided by the parallel exec time

  Efficiency
 efficiency is the percentage of all the processing power that is being used

CS560 Lecture Parallelism Review 7

Speedup and Efficiency of the Mandel Example

CS560 Lecture Parallelism Review 8

Amdahl’s Law

  How fast can we go?
–  Assume that there is always some portion of the computation that is serial.
–  The best we can do for speedup is

–  Where F is the fraction of the computation that is parallel and is the
possible speedup for that fraction.

–  Consequences: what if only 50% of the computation is parallelizable?
90%?

CS560 Lecture Parallelism Review 9

Scaling

  Efficiency measures scaling
–  100% efficiency due to linear speedup is ideal, but not realistic.
–  Strong scaling looks at efficiency as the problem size stays the same and

the number of processors increases.

–  Weak scaling keeps the problem size per processor the same, but
increases the overall workload as the number of processors increase.

CS560 Lecture Parallelism Review 10

Profiling Performance in Parallel Programs
  Various tools

–  HPCToolkit, TAU, CrayPat, …
  Using TAU on the Cray

–  Working on getting this installed on Cray and veges …
–  Put following in source code
#include <Profile/Profiler.h>!
TAU_PROFILE_TIMER(mt,"main()”,"int (int, char **)”,TAU_DEFAULT);!
TAU_PROFILE_SET_NODE(0);!
TAU_PROFILE_START(mt);!
TAU_PROFILE_TIMER(pt, "Parallel Region", " " , TAU_DEFAULT);!
TAU_PROFILE_START(pt);!
…!
TAU_PROFILE_STOP(pt);!
TAU_PROFILE_STOP(mt);!

  Then execute, which will create profile files and use “paraprof .” to view!

CS560 Lecture Parallelism Review 11

TAU Profile of mandel on the Cray

  <Demo, go look at code again to understand variability>

CS560 Lecture Parallelism Review 12

Important Concepts

  Parallel Computation as a DAG (directed acyclic graph)

  Work
–  The total amount of time for all of the tasks assuming we just add up the

time for all the instructions per task.
–  Let T_1 = work and T_P be the fastest parallel execution on P processors.
–  The following bound holds:

  Span, or Critical Path
–  The longest path in terms of instructions in the DAG.
–  Fastest parallel execution given infinite processors is span.
–  Now we have another bound for the fastest parallel execution.

CS560 Lecture Parallelism Review 13

Load Balancing

  Problem
–  Computing each pixel in the mandelbrot set can take a different number of

iterations of the while loop.
–  Default scheduling for OpenMP is implementation independent but

probably evenly divides iterations between processors.

  Possible solution, OpenMP scheduling clauses
–  #pragma omp for schedule(type [, chunk])
–  type

–  static, iterations divided into pieces of size chunk and chunks are
evenly divided among threads

–  dynamic, iterations divided into pieces of size chunk and
dynamically scheduled on threads

–  … see tutorial for others

CS560 Lecture Parallelism Review 14

Performance Profile of mandel on Cray using DYNAMIC

CS560 Lecture Parallelism Review 15

Improvements to Speedup and Efficiency (Mandel)

CS560 Lecture Parallelism Review 16

CS560 Lecture Parallelism Review 17

Concepts

  OpenMP
–  Parallel regions
–  Private variables
–  For loops
–  Reductions
–  Scheduling the for loop

  Performance Analysis for Parallelism
–  Performance Profiling Tools: time command, gettimeofday(), Tau
–  Speedup and efficiency
–  Amdahl’s law, isoefficiency, weak scaling, strong scaling
–  Critical path, work, and span
–  Load balancing

CS560 Lecture Parallelism Review 18

Next Time

  Reading
–  Roofline paper

  Homework
–  HW0 is due Wednesday

  Lecture
–  Complexity of Current and Future Computer Architectures

CS560 Lecture Parallelism Review 19

Terms (Definitely know these terms)

  Parallelism terms
–  Speedup and efficiency
–  Amdahl’s law
–  Isoefficiency (will cover next week)
–  Critical Path
–  Work and Span

  Performance terms
–  MFLOPS – millions of floating point operations per second
–  Load balancing

CS560 Lecture Parallelism Review 20

Some Thoughts on Grad School

  Goals
–  learn how to learn a subject in depth
–  learn how to organize a project, execute it, and write about it

  Iterate through the following:
–  read the background material
–  try some examples
–  ask lots of questions
–  repeat

  You will have too much to do!
–  learn to prioritize
–  it is not possible to read ALL of the background material
–  spend 2+ hours of dedicated time EACH day on each class/project
–  have fun and learn a ton!

Isoefficiency

CS560 Lecture Parallelism Review 21

