1/24/14

CS575: Parallel Processing
Sanjay Rajopadhye CSU

Lecture 2: Parallel Computer Models

Course Topics

- Introduction, background
 - Complexity, orders of magnitude, recurrences
- Models of parallel computing & communication
- Performance, efficiency & speedup
 - Amdahl, Gustafsson, strong/weak scaling
- Parallel algorithms
 - Dense linear algebra, prefix sums, graph algorithms, FFT
- Slides/lectures complement the text and web resources
Course Organization

- Streamline 475-575 flow
- Focus on algorithms and analysis
 - Separate courses on distributed systems, networking
- Advanced CUDA programming
 - Performance tuning
 - Using roofline techniques
 - Guided by analysis
- Beyond CUDA

Sequential Algorithms

- Efficient Sequential Algorithms
 - Optimize for time or space (memory)
- Performance is portable
 - Efficient program on Pentium ~ Efficient program on Opteron
- Algorithmic analysis enabled separation of concerns
- Asymptotic analysis: problem size N
Parallel Algorithms

- Two independent parameters
 - Problem size N same as before
 - Processor count P also grows asymptotically

- Cost of parallelism:
 - Communication
 - Synchronization

- Efficient parallel algorithms (machine/model dependent)
 - Start with the best sequential algorithm
 - (almost) always the best strategy
 - Recomputation (redundant computation) is sometimes better

Speedup & efficiency

- Definitions
- Bounds
- “superlinear”
- Why is that wrong
- Ideal speedup
- Isoefficiency
Programming Paradigms

- Sequential Paradigms: imperative, object oriented, declarative (functional, relational), ...

- Parallel paradigms
 - Language style (same as seq)
 - Parallelism style:
 - Implicit parallelism
 - Explicit parallelism
 - Shared memory
 - Distributed memory

Implicit Parallelism

- Sequential Paradigms: Super compilers
 - Extract parallelism from sequential code
 - Programmer has to do nothing, compiler distributes data, creates and schedules tasks
 - Very limited success (only in niche domains)

- Implicit parallelism with declarative programs
 - Parallel logic languages
 - Parallel functional programming
Functional Languages

- No side effects, order of execution less constrained
- \(F(\ P(x,y), Q(y,z)) \) \(P \) and \(Q \) can be executed in parallel
- Simple single assignment memory model:
 - no pointers, no write after read or write after write hazards (dataflow semantics)
- FP was long doomed as too high level too inefficient, because the simple memory model causes lots of copies
- FP is coming back: MapReduce approach in data centers (Google) is a data parallel functional paradigm

Explicit Parallelism

- Multithreading:
 - OpenMP & CUDA
 - \(P(x,y), Q(y,z) \) \(P \) and \(Q \) can be executed in parallel
- Message Passing (distributed memory)
 - MPI
- Programming becomes more complicated
 - Synchronization (semaphores, locks, messages)
 - creation, allocation, scheduling of processes
 - data partitioning
Background: algorithm analysis

- References:
 - “Introduction to Algorithms,” Cormen, Rivest, Leiserson, Stein
 - Other texts and/or wiki

- Topics:
 - Intro, asymptotic growth of functions, summations recurrences

- Optional/advanced:
 - Average case analysis
 - Amortized analysis

Orders of magnitude

O, Θ and Ω

- A function $f(n) = O(g(n))$ iff \exists positive constants c and n_0 such that $\forall \ n \geq n_0$ (i.e., eventually/asymptotically) $f(n) < g(n)$. So, g is an upper bound on f.

- A function $f(n) = \Omega(g(n))$ iff \exists positive constants c and n_0 such that $\forall \ n \geq n_0$ (i.e., eventually/asymptotically) $f(n) > g(n)$. So, g is a lower bound on f.

- A function $f(n) = \Theta(g(n))$, i.e., g is a tight bound on f (and vice versa) iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.
Algorithmic complexity

Complexity of
- some property (e.g., execution time, memory requirement, etc.)
- of algorithm(s) to solve a problem
 - specific algorithm (complexity of the algorithm)
 - lower bounds, quantified over all algorithms (universal quantifier) to solve that problem: complexity of the problem

A problem may be “closed” LB= θ (UB) or “have a gap”

Recurrence Relations

- Algorithmic complexity often described using recurrence relations:
 $f(n) = g(f(1), f(2), \ldots, f(n-1))$
- Two common classes:
 - Linear:
 - constant number of occurrences of f and argument of each one is just a some constant less than n
 - g is a linear function, with possibly one additional term
 - D&C (divide and conquer)
 - constant number of occurrences of f and argument of each one is just a some constant factor of n
 - Covered in CS 420 (& CS420dl)
Repeated Substitution

- Simple recurrence relations (one recurrent term in the rhs) can sometimes be solved using **repeated substitution**.

- **Two** types: **Linear** and **D&C**
 - \(F(n) = a F(n-d) + g(n) \), base: \(F(1) = v_1 \)
 - \(F(n) = a F(n/d) + g(n) \), base: \(F(1) = v_1 \)

- **Two questions**:
 - what is the **pattern**
 - how often is it applied until we hit the base case

Linear Example

\[
M(n) = 2M(n-1) + 1, \quad M(1) = 1
\]

recognize this one?

\[
= 2 \cdot 2M(n-2) + 1 + 1
= 4M(n-2) + 2 + 1 = 4 \cdot 2M(n-3) + 1 + 2 + 1
= 8M(n-3) + 4 + 2 + 1 = \ldots \text{ inductive step} \ldots
= 2^kM(n-k) + 2^{k-1} + 2^{k-2} + \ldots + 2 + 1
\]

Hit the base case for \(k = n-1 \):

\[
= 2^{n-1}M(1) + 2^{n-1} + 2^{n-2} + \ldots + 2 + 1
= 2^n - 1
\]
D&C Example

Merge sort:
T(n) = 2T(n/2) + n, T(1)=1 (and n = 2k)
= 2(2T(n/4) + n/2) + n
= 4T(n/4) + 2n
= 8T(n/8) + 3n ... inductive step ...
= 2kT(n/2k) + kn
hit base for k = log n
= n + kn = O(n log n)

Another one: binary search

G(n) = G(n/2) + c, G(1)=1 (and n = 2k)
= (G(n/4) + c) + c
= G(n/4) + 2c
= G(n/8) + 3c ... inductive step ...
= G(n/2k) + kc
hit base for k = log n
= G(1) + c log n = O(log n)
Master Method

- Cookbook solution, based on repeated substitution for a number of common cases
 \[f(n) = c f(n/d) + k n^p \]

- If \(C < d^p \), then \(A_n = O(n^p) \)
 - Example: \(A_n = 3 A_{n/2} + n^2 \)

- If \(C = d^p \), then \(A_n = O(n^p \log(n)) \)
 - Example: \(A_n = 2 A_{n/2} + n \)

- If \(C > d^p \), then \(A_n = O(n \log_d c) \)
 - Example: \(A_n = 3 A_{n/2} + n \)

- Covered in CS 420 (& CS420dl)

Examples

- **Merge Sort**
 \[T(n) = 2T(n/2) + n, \quad T(1)=1 \]
 \(C=? \quad d=? \quad p=? \quad d^p=? \)
 \[T(n) = O(???) \]

- **Binary Search**
 \[f(n) = f(n/2)+c, \quad f(1)=1 \]
 \(C=? \quad d=? \quad p=? \quad d^p=? \)
 \[f(n) = O(???) \]
Questions

- How do threads and thread blocks get allocated to SMPs
- How do they synchronize/communicate
- How do they disambiguate memory addresses
 - Which thread writes/reads-from where?
 - What if the addresses are in conflict?
- How are things different at the two levels of memory?
- What about caches?
Thread allocation

Static allocation

• Program declares a number of (virtual) thread blocks — many more than number of SMs
• Run time system allocates them (details unspecified) to thread blocks — main idea non-preemptively scheduled, each TB runs through to completion
• Within a TB – program has a (virtual) number of threads each thread knows of two parameters – its thread id within the TB and the TBs id within the grid.
• Code is parametric, so
 • programmer’s responsibility to write code so the algorithm is correctly implemented by this virtual collection of threads.