CS 655: ADVANCED TOPICS IN DISTRIBUTED SYSTEMS [GRANULES]

Shrideep Pallickara
Computer Science
Colorado State University

Projects utilizing NaradaBrokering

Ecological Monitoring: PISCES

Lessons learned from multi-disciplinary settings
- Framework for processing streaming data
- Compute demands will outpace availability
- Manage computational load transparently

Big Picture

Networked Devices (Sensors, Instruments) Experimental Models

Burgeoning data volumes

Simulations & Services

Instructor: Shrideep Pallickara
Dept. Of Computer Science, Colorado State University
Fueled the need for a new type of computational task

- Operate on dynamic and voluminous data
- Comparably smaller CPU-bound times
 - Milliseconds to minutes
- BUT concurrently interleave 1000s of these long running tasks
- Granules provisions this

Granules is dispersed over, and permeates, distributed components

An application is the sum of its computational tasks that are ...

- Agnostic about the resources that they execute on
- Responsible for processing a subset of the data
 - Fragment of a stream
 - Subset of files
 - Portions of a database

Granules does most of the work for the applications except for ...

1. Processing Functionality
2. Specifying the Datasets
3. Scheduling strategy for constituent tasks

Granules processing functionality is domain specific

- Implement just one method: execute()
- Processing 1 TB of data over 100 machines is done in 150 lines of Java code.

Computational tasks often need to cope with multiple datasets

- TYPES: Streams, Files, Databases & URIs
- INITIALIZE: Configuration & allocations
- ACCESS: Permissions and authorizations
- DISPOSE: Reclaim allocated resources
Computational tasks specify their lifetime and scheduling strategy

- Combine along any of these dimensions
- Change during execution
- Assert completion

Granules discovers resources to deploy computational tasks

- Deploy computation instance on multiple resources
- Instantiate computational tasks & execute in Sandbox
- Initialize task’s STATE and DATASETS
- Interleave multiple computations on a given machine

Deploying computational tasks

- Granules discovers resources to deploy computational tasks
- Combines computation instance on multiple resources
- Instantiates computational tasks & executes in Sandbox
- Initializes task’s STATE and DATASETS
- Interleaves multiple computations on a given machine

Granules manages the state transitions for computational tasks

Transition Triggers:
- Data Availability
- Periodicity
- Termination conditions
- External Requests

Map-Reduce enables concurrent processing of large datasets

- Substantial benefits can be accrued in a streaming version of Map-Reduce
- File-based = Disk IO → Expensive
- Streaming is much faster
 - Allows access to intermediate results
 - Enables time bound responses
 - Granules Map-Reduce based on streams
In Granules MAP and REDUCE are two roles of a computational task

- Linking of MAP-REDUCE roles is easy
 - `M1.addReduce(R1)` or `R1.addMap(M1)`
 - Unlinking is easy too: remove

- Maps generate result streams, which are consumed by reducers
- Reducers can track outputs from Maps

Scientific applications can harness Map-Reduce variants in Granules

- Iterative/Recursive: Fixed number of times or till termination condition
- Periodic
- Data Availability Driven

Complex computational pipelines can be set up using Granules

- Iterative, Periodic, Recursive & Data driven
- Each stage could comprise computations dispersed on multiple machines

Granules manages pipeline communications complexity

- No arduous management of fans-ins
- Facilities to track outputs
- Confirm receipt from all preceding stages.

The streaming substrate provides consistent high performance throughput

- Streaming overheads for different payload sizes (100B - 100KB)
 - Mean transit delay (Milliseconds)
 - Standard Deviation (Milliseconds)
 - Content Payload Size (Bytes)
The streaming substrate provides consistent high performance throughput.

Granules outperforms Hadoop & Dryad in a traditional IR benchmark.

Computing the product of two 16Kx16K matrices using streaming datasets.

Maximizing core utilizations when combining mRNA sequences.

Preserving scheduling periodicity for 104 concurrent computational tasks.

EEG STREAM PROCESSING
Electrode Placement

- Non-invasive
- Cap holds electrodes to the scalp
- Electrode placement follows international 10-20 system of electrode placement

Artificial Neural Networks

- Number of input and output nodes are defined by the data
- Number of hidden units can vary
 - More hidden units can model more complex data
 - More hidden units take longer to train
- Weights are added between input and hidden and hidden and output layers

Approach

- R backend
 - Optimized for matrix multiplication
 - Existing code available for EEG manipulation, as well as neural network code
- Group of experts approach
 - Fits the map reduce framework
 - Mappers classify
 - Reducer produces expert opinion
- 3 sets of experiments:
 - Baseline times in R
 - Cloud communication overhead with Snowfall
 - Cloud and bridge communication overhead with Granules and JRI

Frameworks Used

- Snowfall
 - Parallel computing package for R
 - Builds on the Snow package
 - Executes sequential code on multiple machines simultaneously
 - Does not require strong parallel computing background
- Granules
 - Lightweight cloud computing runtime
 - Java based
 - Allows user to specify run semantics – can enter a dormant state while waiting for more data to become available
- JRI
 - Java R Interface
 - Allows R computations to be run through Java
 - Communication is string-based

Snowfall Network Setup

Granules Network Setup
Baseline Results

Loading a single training set (200MB) in ms

<table>
<thead>
<tr>
<th>Mean(ms)</th>
<th>Min(ms)</th>
<th>Max(ms)</th>
<th>SD(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6581.602</td>
<td>6439.742</td>
<td>6822.34</td>
<td>101.376</td>
</tr>
</tbody>
</table>

Training a neural network from 4 training sets in ms

<table>
<thead>
<tr>
<th>Mean(ms)</th>
<th>Min(ms)</th>
<th>Max(ms)</th>
<th>SD(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>104489.4</td>
<td>102194.9</td>
<td>10502.9</td>
<td>159.076</td>
</tr>
</tbody>
</table>

Classification times with 1 neural net in ms

<table>
<thead>
<tr>
<th>Stream Time</th>
<th>Mean(ms)</th>
<th>Min(ms)</th>
<th>Max(ms)</th>
<th>SD(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5s</td>
<td>23.0432</td>
<td>22.17889</td>
<td>23.56791</td>
<td>0.4734237</td>
</tr>
<tr>
<td>1s</td>
<td>5.28194</td>
<td>4.909039</td>
<td>11.16085</td>
<td>0.8568976</td>
</tr>
<tr>
<td>250ms</td>
<td>1.710529</td>
<td>1.673937</td>
<td>1.926184</td>
<td>0.03777157</td>
</tr>
</tbody>
</table>

Snowfall and Granules Training Comparisons

<table>
<thead>
<tr>
<th>NNs</th>
<th>Training Sets</th>
<th>Approach</th>
<th>Mean(ms)</th>
<th>Min(ms)</th>
<th>Max(ms)</th>
<th>SD(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Snowfall</td>
<td>409850.5</td>
<td>403364.3</td>
<td>419965.7</td>
<td>4216.875</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Granules</td>
<td>71384.2</td>
<td>70049.0</td>
<td>72416.6</td>
<td>1514.051</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Snowfall</td>
<td>462526.2</td>
<td>45174.9</td>
<td>48235.9</td>
<td>2392.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Granules</td>
<td>675968.8</td>
<td>670559.0</td>
<td>772679.0</td>
<td>52823.25</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Snowfall</td>
<td>1001831</td>
<td>971224</td>
<td>1020680</td>
<td>17743.27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Granules</td>
<td>1932540</td>
<td>1782531</td>
<td>2057664</td>
<td>110686.70</td>
<td></td>
</tr>
</tbody>
</table>

Classification Times

<table>
<thead>
<tr>
<th>Method</th>
<th>Stream Time</th>
<th>Mean(ms)</th>
<th>Min(ms)</th>
<th>Max(ms)</th>
<th>SD(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snowfall</td>
<td>5s</td>
<td>8884.66</td>
<td>8797.745</td>
<td>9009.47</td>
<td>85.82</td>
</tr>
<tr>
<td>Granules</td>
<td>5s</td>
<td>141.68</td>
<td>136.42</td>
<td>260.63</td>
<td>17.75</td>
</tr>
<tr>
<td>Snowfall</td>
<td>1s</td>
<td>5825.71</td>
<td>5815.38</td>
<td>5837.98</td>
<td>10.09</td>
</tr>
<tr>
<td>Granules</td>
<td>1s</td>
<td>93.16</td>
<td>47.51</td>
<td>492.68</td>
<td>32.13</td>
</tr>
<tr>
<td>Snowfall</td>
<td>250ms</td>
<td>2831.32</td>
<td>2830.38</td>
<td>2849.83</td>
<td>2.03</td>
</tr>
<tr>
<td>Granules</td>
<td>250ms</td>
<td>47.25</td>
<td>48.57</td>
<td>92.67</td>
<td>4.49</td>
</tr>
</tbody>
</table>

Maximum Supported Users on a Single Machine

<table>
<thead>
<tr>
<th>Users</th>
<th>Mean(ms)</th>
<th>Min(ms)</th>
<th>Max(ms)</th>
<th>SD(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>69.33</td>
<td>71.89</td>
<td>76.30</td>
<td>20.87</td>
</tr>
<tr>
<td>150</td>
<td>69.81</td>
<td>72.60</td>
<td>82.82</td>
<td>22.49</td>
</tr>
</tbody>
</table>

Scaling to multiple machines

- Gathered statistics for classification on 5 and 10 machines
- Each machine supported 15 users
- While 17 users per 8-core machine could be supported, the network was swamped with 150 simultaneous users
 - 12MB/s 1GB/83s 1TB/23h

Stress Histograms – 75 users

<table>
<thead>
<tr>
<th>Users</th>
<th>Mean(ms)</th>
<th>Min(ms)</th>
<th>Max(ms)</th>
<th>SD(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>69.33</td>
<td>71.89</td>
<td>76.30</td>
<td>20.87</td>
</tr>
<tr>
<td>150</td>
<td>69.81</td>
<td>72.60</td>
<td>82.82</td>
<td>22.49</td>
</tr>
</tbody>
</table>
Clustering

- Unsupervised machine learning technique
- Finds logical 'clusters' to group data into
 - Not guaranteed to make sense to humans
- We work with a set of news articles
 - Reuters-21578 text categorization collection dataset
 - From the UCI Machine Learning Repository

Clustering in Hadoop

- Mahout is a Java-based machine learning library built to work with Hadoop
- We are only looking at the supported clustering algorithms
- Hadoop is execute-once and relies on disk to store state information
 - Since clustering usually runs for many rounds, there is a heavy disk I/O overhead

Clustering with Mahout in Granules

- Granules allows computations to build state over multiple rounds of execution
 - Do not need to write to disk between iterations
 - Could vastly speed up Mahout runtimes
- Granules is also Java-based
- We should be able to perform Mahout operations with little modification to boiler-plate code
 - Do not need to touch Mahout algorithms
Analyzing the Data

- Both Granules and Hadoop versions use the same data
- Data is broken from text files into sequence files
- Producers create vectors of normalized bigrams
- With term frequency-inverse document frequency (TF-IDF) weighting
- Bigrams are a set of two adjacent words
- There are 95,000+ unique bigrams in our data
- TF-IDF helps to lower the importance of words which occur across all documents
- He, She, The etc.
- 21,578 points to cluster in 95K+ dimensions

Clustering techniques

- **K-Means**
 - Most basic clustering algorithm supported by Mahout
 - Slightly more complex, allows data to belong to more than one group
 - Dirichlet
 - No set k - it adds and removes clusters as it deems necessary
 - Can support data where clusters should not have a normal distribution
 - Latent Dirichlet Allocation (LDA)
 - Similar to Dirichlet
 - Generative Model
 - Closest to Human Clustering

K-Means

- Fixed k, or number of clusters
 - Cluster centers are moved based on the previous iteration of clustering technique
- Larger numbers of clusters would mean finer-grained topics
- Good when you believe data is easily separable
 - An article only belongs to one broad topic
- May not return clusters that make sense to humans
 - It clusters across dimensions we don’t take into account

Fuzzy K-Means

- Builds off of K-means
 - Still a fixed k clusters
 - Now data can belong to multiple groups
- Can model more complex relations
 - From our data:
 - An article may discuss all prices in the Middle East
 - K-means would cluster with either articles about the Middle East, or about prices of raw materials
 - Fuzzy K-means would be able to show this relationship to both
 - Each data point receives a probability of belonging to every cluster
 - More time spent in CPU
Dirichlet Clustering

- No set number of clusters
- Can support data which does not fit a normal model
- More complex than k-means or fuzzy k-means
- Longer runtime
- If only run for a few iterations, can be a good first-pass approach
- Help to determine the k to give k-means or fuzzy k-means
- Can explain why k-means is having trouble with the data

Dirichlet Clustering Results

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granules</td>
<td>488.78</td>
<td>481.64</td>
<td>10.474</td>
<td></td>
</tr>
<tr>
<td>Hadoop</td>
<td>2980.24</td>
<td>2830.94</td>
<td>3068.12</td>
<td>46.794</td>
</tr>
</tbody>
</table>

Latent Dirichlet Allocation (LDA)

- Similar to Dirichlet
- Generative model
 - Starts with a known model, and tweaks parameters to fit the model to the data
- LDA clusters documents by word according to “topics”
 - Like fuzzy k-means, a word belongs to all “topics” with a given probability
 - Document belongs to topics based off of the probabilities of all the words
- Uses a k
 - The number of topics
- Generated clusters make sense to humans
- Very CPU intense

LDA Results

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Min</th>
<th>Max</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granules</td>
<td>1873.91</td>
<td>1870.01</td>
<td>1878.26</td>
<td>3.057</td>
</tr>
<tr>
<td>Hadoop</td>
<td>1712.64</td>
<td>1682.19</td>
<td>1756.12</td>
<td>32.595</td>
</tr>
</tbody>
</table>

Key highlights of Granules

- Easy to develop applications
- Support for real-time streaming datasets
- Rich lifecycle and scheduling support for computational tasks.
- Enforces semantics of complex, distributed computational graphs

Conclusions

- Complexity should be managed by the runtime, and not by domain specialists
- Autonomy of Granules instances allows it to cope well with resource pool dilations
- Provisioning lifecycle metrics for the parts makes it easier to do so for the sum