Privacy-Safe Network Trace Sharing via Secure Queries

Jelena Mirkovic
USC Information Sciences Institute
4676 Admiralty Way ste 1001
Marina Del Rey, CA 90292, USA

sunshine@isi.edu

ABSTRACT

Privacy concerns relating to sharing network traces have tra-
ditionally been handled via sanitization, which includes re-
moval of sensitive data and IP address anonymization. We
argue that sanitization is a poor solution for data sharing that
offers insufficient research utility to users and poor privacy
guarantees to data providers.

We claim that a better balance in the utility /privacy trade-
off, inherent to network data sharing, can be achieved via a
new paradigm we propose: secure queries. In this paradigm,
a data owner publishes a query language and an online por-
tal, allowing researchers to submit sets of queries to be run
on data. Only certain operations are allowed on certain data
fields, and in specific contexts. Query restriction is achieved
via the provider’s privacy policy, and enforced by the lan-
guage’s interpreter. Query results, returned to researchers,
consist of aggregate information such as counts, histograms,
distributions, etc. and not of individual packets. We discuss
why secure queries provide higher privacy guarantees and
higher research utility than sanitization, and present a design
of the secure query language and a privacy policy.

Categories and Subject Descriptors: H.3 Information Stor-
age and Retrieval: Data sharing

General Terms: Legal aspects, security, standardization.
Keywords: Network traces, sharing, sanitization, privacy.

1. MOTIVATION

Network packet traces are essential for data-mining and
validation in networking research. Sharing network data is
necessary to provide researchers with diverse data sets, but
it creates a lot of privacy risk to data providers. This util-
ity /privacy tradeoff is the crux of network data sharing. Re-
search utility of data is difficult to quantify since it depends on
the specifics of research questions for which the data is used.
In general, a useful trace contains a lot of information, which
correlates with the amount of data fields that are released in
their original, unmodified version and collection duration.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NDA’08, October 31, 2008, Fairfax, Virginia, USA.

Copyright 2008 ACM 978-1-60558-301-3/08/10 ...$5.00.

Also, each trace is representative only of the traffic at its col-
lection location, thus an ISP trace cannot be used to validate
end-network solutions.

Privacy risk from data sharing is also difficult to quantify,
because the information contained in packet traces cannot
be fully enumerated. Some data fields are known to pose
a privacy risk, because they contain user, host or network-
identifying information, private data such as passwords, or
can be used to infer the collection network’s private data,
such as topology, operating systems on hosts, open ports, etc.
A straightforward approach to handle known risk is to re-
move or obscure information in privacy-sensitive fields. But,
a lot of privacy risk stems from yet unknown threats. Data
that is considered privacy-safe today may correlate with some
privacy sensitive information; this can be exploited by future
threats. Another problem are attacks that use auxiliary in-
formation to infer privacy-sensitive content. For example, an
attacker that knows a host X has a rare port Y open can iden-
tify this host in the trace and extract information about its
other open ports. Dwork et al. showed that absolute privacy
cannot be achieved in presence of auxiliary information [1].

1.1 Attack Classes

A passive attacker can observe a publicly released trace and
use some source of auxiliary information, such as published
Web material [2], to infer privacy-sensitive data.

An active attacker, can inject traffic into a trace during the
collection time, and identify it in the public release. This pro-
vides an effective auxiliary information channel that can then
be misused in a passive attack.

1.2 Trace Sanitization and Its Drawbacks

Utility /privacy tradeoff in network trace sharing is com-
monly addressed via trace sanitization. It removes or anony-
mizes privacy-sensitive packet fields, such as contents and IP
addresses. The resulting “one size fits all” trace is released to
the public. We argue that data release via sanitization is an
inherently bad idea that does not address well either utility
or privacy aspects of trace sharing.

Sanitization severely decreases utility because a data field
found to be privacy-sensitive in any one context is removed
from or obscured in the entire trace. This disables many re-
search contexts that would not use given data in a privacy-
sensitive way. For example, packet length can be used to
identify Web pages visited by a user [3]. This attack is possi-
ble only when all reply packets are observed within one TCP
connection with a Web server, or when this data is summa-
rized in a NetFlow trace [4]. Removing packet length from

a trace, or only from TCP packets from Web port 80, solves
the privacy risk. But it also disables innocent research, e.g.,
about packet length distribution on the Internet, that never
accesses packet length field in the risky context.

Table 1 shows the overview of papers that were published
in SIGCOMM and the Internet Measurement Conference, in
2006 and 2007. We examined each paper and classified it as
using a public, a private or no traffic trace. A paper could
use a mix of private and public traces, in which case it was
counted in both categories. Out of 144 papers total 49 used
some traffic trace, but only 10 used a public trace and the rest
used privately collected traces. This shows that researchers
prefer to use a private traffic trace (if they have an access to
one) instead of a public trace. A likely reason for this is lower
research utility of public traces.

SIG 06 | IMC 06 | SIG 07 | IMC 07
Total papers 37 34 35 38
Used a traffic trace 9 15 10 15
Used a public trace 2 1 6 1
Used a private trace 8 14 6 14

Table 1: Trace usage in SIGCOMM and IMC papers.

Sanitization further offers very low privacy guarantees for
several reasons. First, many known passive attacks are not
currently handled through sanitization because this would
severely reduce resulting trace utility. Examples of this in-
clude attacks that infer Web page identity from packet length
[3, 4], attacks that use packet timing to identify physical hosts
[5, 6], and attacks that use anonymized address clustering
and behavior modeling to break anonymization [2]. A trace
with obscured or deleted packet length and packet timing,
and with randomly anonymized addresses (to prevent clus-
tering) would be useless for many researchers!

Second, no sanitization can defeat active attacks, where an
attacker injects well-crafted packets during trace collection
time, and identifies them in the sanitized trace thus breaking
the anonymization. Attackers can always craft packets that
data providers cannot detect — this is an instance of a covert
channel problem, which itself is intractable. We note that pri-
vacy risk does not really lie in the attacker’s ability to inject
traffic or to later locate it in the trace. Instead, it lies in the
fact that a lot of information about hosts can be mined from
a sanitized trace, such as operating system, active services,
communication patterns, etc., which is desired for research.
Active attacks simply enable an attacker to link this rich in-
formation with a real IP.

Finally, sanitization offers poor protection against future
attacks. Much information about hosts and data provider’s
network is revealed in a sanitized trace. Each user has access
to all the trace’s information, even if she needs to mine only
a small portion of it. Data providers have no control over
trace usage once it is downloaded by a user. Attackers can
thus mine trace information at will, and design future attacks
against anonymization. Once an effective attack is published
all past users can apply it.

1.3 New Paradigm: Secure Queries

We explore a novel direction to address the privacy/ utility
tradeoff of trace sharing: secure queries on original traces
under provider’s control. Data provider publishes a query

language and an online portal, allowing researchers to sub-
mit sets of queries to be run on data. The provider’s privacy
policy restricts queries on some data fields and in some con-
texts. This facilitates precise specification of situations that
may lead to private data leakage in presence of passive and
active attacks, and maximizes trace’s research utility. Queries
are analyzed against the privacy policy and permitted que-
ries are run. The results, returned to researchers, consist of
aggregate information such as counts, histograms, distribu-
tions, etc. and not of individual packets. Such information is
still very useful to researchers — majority of published papers
present information mined from network traces via graphs
or tables containing aggregate measures.

Trace queries were originally proposed in [7], but they re-
quired human verification for privacy leaks. We introduce
secure queries that are automatically verified via the language
interpreter. There is extensive work in databases on privacy-
preserving sharing of data (Section 4). We build on this work,
which is not done by previous trace sharing approaches.

1.3.1 Advantages over Sanitization

Secure queries address utility/privacy tradeoff much bet-
ter than sanitization. On the utility side, secure queries show
a potential to reveal more data to researchers. Packet fields
that were removed in sanitization, such as application head-
ers or even contents, can be processed securely using queries.
Fine-grain control via query language enables processing of
many fields in the application header, and even hashing of
sensitive application content, while satisfying the provider’s
privacy concerns. It also enables precise sanctioning of que-
ries only in contexts that pose a known risk, reducing infor-
mation loss. A high-level query language will further al-
low users to more easily specify data-mining tasks, instead
of writing low-level parsers. This simplifies development,
debugging and verification.

Secure queries protect provider’s privacy better than sani-
tization. First, they offer fine-grained control to data providers
over the use of their traces. Passive attacks that cannot be
handled via sanitization, because of research utility loss, can
be handled via the privacy policy that precisely identifies
the risky context when data should be obscured. Second,
since all data access occurs via a provider-owned portal, the
provider can log and audit all queries, thus learning about
usage patterns and possible misuse attempts. Many active
attacks can be handled via a combination of query restric-
tion, result set restriction (forbidding queries that relate to
small host sets), and auditing.

Finally, future attacks can be handled by adding new rules
into the privacy policy. Only past users that have run now-
forbidden queries may apply discovered attacks, unlike the
sanitization case where all past users may do so. Because
networking research is diverse, percentage of users that have
run any specific query should be low. Moreover they can all
be identified via query logs.

1.3.2 Discussion

We now openly address some difficult questions.

Many researchers need access to raw packets, and our
paradigm forbids that. Lots of researchers need to examine
packets in the exploratory stages of their research, when they
investigate a new phenomenon. Packet access enables them
to spot regularities or anomalies and improve their hypothe-
sis but it creates large privacy risk. Exploratory research will

need to be performed on private traces, until it advances to
the point that it has a hypothesis that can benefit from aggre-
gate results shown by secure queries. A data provider may
also choose to approve access to a sanitized version of his
traces to trusted researchers.

Further, some researchers may need packet access because
they are designing traffic replay tools and need to feed raw
traces into these tools. These researchers will never benefit
from secure queries but they represent a small percentage of
the overall networking community.

Can you foresee all the query types that users will need?
No, and likely some users will need an operation that is not
yet supported. There are many ways to handle addition of
new keywords and operations to the language, and we opt
for the open-source approach. Data provider releases lan-
guage interpreter as an open source and users modify it to
implement desired operations, test them on private traces,
and petition the provider for an update. Interpreter updates
then need to be manually examined by providers and ap-
plied to the version installed on their portal.

If secure query paradigm were widely accepted it would
be desirable to have the single, standard query language.
Language updates could be reconciled with the standard in
the following way. The standard could be maintained by
a community of data providers. All updates accepted by
providers could be discussed in the community and those

that are deemed useful and privacy-safe by the majority would

result in the standard update. Providers opposed to new lan-
guage constructs can prohibit them via their privacy policy.

Can you prove that no private information is leaked by
secure queries? We cannot. It is impossible to prove that no
data is leaked by any protection mechanism, save for com-
plete refusal to share anything. However, we show that cer-
tain attack classes, currently known to pose privacy risk, are
handled by the security policy we propose. It is possible that
in our analysis we missed some attacks that will occur to
readers. When that happens, we are confident that a privacy
policy can be designed that prevents them. Future will also
bring new, effective attacks on any approach to data sharing
that our current policy does not handle. But secure queries
are better suited to deal with those attacks, via policy modi-
fications, than is sanitization.

1.4 Paper Overview

We summarize network data sharing via sanitization in
Section 2. We propose a secure query language and a pri-
vacy policy in Section 3 and discuss their privacy guaran-
tees. Lessons learned from database privacy are summarized
in Section 4, and related work on trace sharing in Section 5.
Section 6 offers a brief conclusion.

2. TRACE SANITIZATION

Trace sanitization is commonly done by removing packet
contents and anonymizing source and destination addresses.
The following anonymization approaches were developed.

Positional anonymization [8] replaces each address in the trace
with a number indicating its order of appearance. This re-
sults in inconsistent mapping of any address across traces,
which can be amended by developing a map dictionary. When
anonymizing multiple traces, dictionary entries depend on
the order of file processing.

Cryptographic anonymization [9] replaces each address in the
trace with an encrypted value. If the same key is used to

anonymize multiple traces, a given address will always map
to the same anonymized value.

Prefix-preserving anonymization [9] is cryptographic anony-
mization applied to portions of the IP separately, so that hosts
that share a prefix in the original trace continue to do so in
the anonymized trace. Prefix-sharing information is used by
researchers to detect hosts that belong to the same network.

2.1 Attacks on Sanitization

Known attacks on sanitization focus on retrieving the orig-
inal IP addresses from the anonymized trace, and using this
information to determine communication patterns for the ide-
ntified hosts, or to discover some features (e.g., open ports)
that can be used to attack these hosts in the future. If the
anonymization is prefix-preserving, a discovery of a single
original IP means the discovery of portions of other IPs that
share a prefix with it [9]. We now present an overview of
known attacks and name them for easier reading.

The Web Page attack [3, 4] identifies Web pages based on the
number and length of objects in Web replies.

The Clock Skew attack identifies a host by calculating the
skew between the packet sender’s clock and some referent
clock, and uses it to uniquely identify physical hosts. One
way to calculate the skew is to observe the evolution of the
difference between the sender’s clock, recorded in TCP times-
tamps, and the collection machine’s clock, recorded in packet
capture time [5]. Another way is to select multiple pack-
ets that represent some automated activity, known to hap-
pen at intervals of size T, perform a Fourier transform on
packet capture times and infer the skew as the difference
between the measured frequency f’ and the intended fre-
quency f =1/T.

In [2] authors use link-layer header data to infer network
topology, address clustering to detect subnets of IPs anony-
mized in prefix-preserving manner, and behavior models of
popular, known servers to break their anonymization. We re-
fer to these attacks as Link Layer attack, Clustering attack and
Behavior attack. Each attack sets off a chain of inference since
one deanonymized address brings information about other
addresses with the same prefix, and together with topology
yields much of sensitive internal information.

The Scan attack [6] uses the fact that port scans from a sin-
gle machine frequently target IPs in order. Observing a scan
sequence from the same source in a sanitized trace, an at-
tacker can infer the relationship between destination addre-
sses. Identifying any of the addresses in the sequence then
reveals the entire sequence.

There is an infinite number of active attacks because an
attacker can use any combination of packet fields and timing
to generate injection traffic he can easily spot, but that seems
inconspicuous to the data provider. We consider all active
attacks as instances of this general class we seek to handle.

3. SECURE QUERIES

We now propose a design of a secure query language, which
we call Trol and a sample privacy policy.

3.1 Trol Language

While we plan to develop Trol operations for application
headers and contents, as the first step we focus on process-
ing IP and transport header fields only. Trol is not yet fully
implemented, but we present here its design, which is com-
plete. Trol’s grammar is shown in Figure 1 in yacc format.

operations: operations operation
| operation

operation: INIT QUOTE NAME QUOTE
| SELECT WHERE condition
| GROUP BY condition START condition END condition dups
| FOREACH GRP NAME DO operations DONE
| FOREACH PKT NAME DO operations DONE
| SORT BY feature direction
| IF condition THEN operations FI
| IF condition THEN operations ELSE operations Fl
| var ASSIGN aexpression
| OUTPUT aggregates

condition: /* empty */
| rexpression
I NOT condition
| LPAREN condition RPAREN
| condition AND condition
| condition OR condition

rexpression: aexpression EQ aexpression
| aexpression NE aexpression
| aexpression LT aexpression
| aexpression GT aexpression
| aexpression LE aexpression
| aexpression GE aexpression

aexpression: mexpression
| aexpression PLUS mexpression
| aexpression MINUS mexpression

mexpression: pexpression
| mexpression MULT pexpression
| mexpression DIV pexpression

pexpression: LPAREN aexpression RPAREN
I rhs
| NUMBER
| QUOTE NAME QUOTE
| NAME

utilityf: HASH LPAREN feature RPAREN
| SHARESUBNET LPAREN feature COMMA feature COMMA NUMBER RPAREN
| ISCLOSE LPAREN feature COMMA feature COMMA NUMBER RPAREN
| ISCOMMERCIAL LPAREN feature RPAREN direction: INCREASING
| ISACADEMIC LPAREN feature RPAREN

| DECREASING
| ISISP LPAREN feature RPAREN -
| BIN LPAREN feature RPAREN datafield: DATALEN
| CAPTIME
elem: PKT | IPVER
| GRP I IPIHL
aggregates: COUNT elem I'IPTOS
| COUNT UNIQUE rhs I'IPTOTLEN
| PDF XAXIS rhs I'IPID
| CDF XAXIS rhs I'IPDF
I HIST XAXIS rhs I IPMF
, | IPOFFSET
rhs: q_atafleld 1 IPTTL
| utilityf 1 IPPROTO
| var 1 IPCHECK
| lead de_lt_aﬂeld | IPSRC
| lead utilityf | IPDST
var: svar | TCPSRC
| lead svar | TCPDST
svar: NAME | TCPAGKNUM
| NAME LBRACKET var RBRACKET | TOPORFSET
| NAME LBRACKET NUMBER RBRACKET | TOPFLAGS
lead: FIRST DOT | TCPWIN
| LAST DOT | TCPCHECK
| NAME DOT | TCPURGPTR
I NAME DOT LAST DOT | TCPTIMESTAMP
I NAME DOT FIRST DOT | UDPSRC
| GRP DOT | UDPDST
| GRP DOT FIRST DOT | UDPLEN
| GRP DOT LAST DOT | UDPCHECK
dups: /* empty */ I ICMPTYPE
| DUPLICATES [ICMPCODE
I ICMPCHECK

Figure 1: Trol grammar.

For space reasons we do not show token declarations but
they should be obvious from the grammar.

INIT operation loads trace data from a file in pcap format
into the working set, which is an array of packet structures.
Multiple INIT operations can be used to enlarge the working
set. All other operations manipulate this set.

SELECT operation reduces the working set only to pack-
ets that meet a given condition. This is a permanent change,
meaning that operations following a SELECT occur on a re-
duced set. A condition may be empty which defaults to “true”,
or it could be a combination of relational expressions and log-
ical operators.

GROUP operation groups packets in the working set by
some similarity condition specified after BY keyword. Inter-
nally, the working set is partitioned into a set of packet arrays,
each holding members of one group. After this operation,
packets that do not belong to a group are removed from the
working set. Conditions after START and STOP keywords
describe criteria a packet must match to be the first or the
last packet in a group. DUPLICATES keyword may follow,
denoting that repeated packets that match the similarity con-
dition should be added to the group. Features of the first
and the last packet in the group can be accessed by using
keywords "first" and "last" in front of a name of any packet
feature. Figure 2 shows a sample Trol script that groups all
TCP packets into connections. A new connection starts with
a SYN packet or after a 60-second pause in an existing con-
nection. A connection ends with an ACK packet following
a FIN-ACK packet, with a RST packet or after a 60-second
pause. Repeated packets will be included in the connection.

GROUP statements can be nested, e.g., one could group
packets per host, then group all host’s traffic by connection.
Internally, each nested GROUP statement transforms an ex-
isting packet array, representing a current group, into an ar-
ray of packet arrays. This brings up an issue of the target
of statements following a GROUP statement. It is conceiv-
able that a user may want to apply some of the following
operations on each group separately, and others on the en-
tire working set. In case of nested GROUP statements the
user must be able to refer to each grouping level and ma-
nipulate it. FOREACH statement helps disambiguate these
cases by allowing explicit iteration over groups at the same
level as this statement, and iteration over packets in a group.
It also allows naming of the current group or packet so they
can be manipulated with statements enclosed between DO
and DONE as part of the FOREACH statement. Users can
further declare and manipulate group variables that have an
instance for each group. Within the body of a FOREACH
statement this is done by prefacing a variable name with the
group’s name. Outside of a FOREACH statement, the key-
word group can be used to refer to groups at the same level as
this statement. Figure 3 shows code that could follow state-
ments from Figure 2 to calculate total traffic in a connection,
and then select connections that had more than 1,000 bytes.

SORT statement orders packets in the working set or pack-
ets within a group in increasing or decreasing order of the
specified feature. IF-THEN-ELSE statements enable selective
application of operations depending on some condition. AS-
SIGN statements assign a value calculated in an arithmetic
expression to a left-hand-side variable.

SELECT WHERE ip.proto == "tcp"
GROUP BY (first.ip.src == ip.src OR first.ip.src == ip.dst)
AND (first.tcp.src == tcp.src OR first.tcp.src == tcp.dst)
START (tcp.flags == "S" OR captime - last.captime < 60)
END ((tcp.flags == "A" AND last.tcp.flags == "AF")
OR tcp.flags == "R" OR captime - last.captime > 60) DUPLICATES

Figure 2: Grouping TCP packets into connections.

FOREACH group G DO
G.sum=0
FOREACH pkt P DO
G.sum = G.sum + P.datalen
DONE
DONE
SELECT WHERE group.sum > 1000

Figure 3: Selecting connections with more than 1,000 bytes.

OUTPUT statements display a selected aggregate statistic,
calculated on the working set or over groups, to the user. The
statistic can be a count, count of unique values of a certain
feature, a probability density function, a cumulative distri-
bution function or a histogram. For the last three options,
a user can choose a feature to be shown on the x-axis. For
example, "OUTPUT HIST XAXIS group.sum" appended to
code in Figures 243 outputs a histogram of connections that
had more than 1,000 bytes, with connection size on x-axis.

Arithmetical, logical and relational operations in Trol are
defined as usual. They manipulate strings, numbers, packet
fields, scalar, array or group variables, or outputs of utility
functions. Packet fields include standard IP, TCP, UDP and
ICMP packet header fields, the packet capture time and size
of packet contents. Utility functions serve to extract useful
informations from privacy-sensitive data in a safe manner
and include: (1) hashing a value, (2) binning a variable by
value, (3) operations that test if an IP address belongs to a
commercial entity, an academic institution or an ISP, (4) oper-
ations that test if two IPs belong to the same subnet of specific
length, or (5) if they are geographically closer than a certain
distance. We explain the binning operation in Section 3.4.

There are many useful operations that could be added to
Trol grammar. We decided to start with a small set of com-
mon operations that we could analyze and implement, then
extend it as we proceed.

3.2 Privacy Policy Specification

A provider-defined privacy policy, along with the Trol in-
terpreter that analyzes submitted queries based on the policy,
restricts certain operations that may reveal privacy sensitive
data. Some restrictions are enforced at the parsing stage, and
others during execution or at the display stage.

3.3 Privacy Requirements

The following set of privacy requirements is frequently ado-
pted by today’s trace data providers, and in this section we
show how the privacy policy is extracted from the require-
ments and enforced. It is likely that many data providers
will need to further customize these requirements and the
proposed privacy policy to fit their organizational policy [6].

The privacy risk to the data provider from sharing the trace
should not greatly increase with respect to the attacker learn-
ing the following information: (1) Packet contents, (2) Presence or

absence of a host in the trace, (3) Presence or absence of communi-
cation between two hosts, (4) Open ports or OS type and version
per host. Learning this information for the entire organization is
acceptable as long as it cannot be paired to a specific host.

Our formulation of the privacy requirement relies directly
on Dwork’s definition of differential privacy [1] for statistical
databases. The publication [1] shows that a stronger state-
ment “there is no privacy risk” cannot be supported because
an attacker with auxiliary information may retrieve private
data from even the smallest piece of shared information, which
by itself appears privacy-safe. As we discuss in Section 4
much existing wisdom from database research can be reused
in context of trace sharing.

3.4 Linking Requirements to Attacks

We now link privacy requirements to packet fields and op-
erations that would pose privacy risk. Revealing a single
packet’s content or any IP address is unacceptable according
to our requirements 1, 2 and 3. Because of the simple algo-
rithm for checksum calculation, the cheksum field may also
leak information about packet contents.

Our privacy policy achieves the desired protection by re-
quiring that any access to fields whose single value could be
sensitive occurs via a utility function. Utility functions pro-
vide privacy-safe, commonly researched information about
sensitive fields. Packet contents and checksum can only be
accessed via the hash function, while IP addresses can be
accessed via the hash function, and the functions that test
the membership of IPs in the subnet, their geographic prox-
imity and their type. To comply with privacy requirements,
the GROUP BY condition in Figure 2 should be modified to
"(HASH(first.ip.src) == HASH(ip.src) OR HASH(first.ip.src)
== HASH(ip.dst))".

Presence or absence of a single or a pair of hosts in the trace
can also be inferred from other packet fields via passive or
active attacks. Currently known passive attacks that are ap-
plicable to Trol queries are the Web Page [3, 4] and the Clock
Skew attack [5]. The Link Layer attack [2] does not apply be-
cause Trol operations we proposed do not access link-layer
data. Assuming all access to IP addresses is via utility func-
tions, the Clustering [2] and the Scan [6] attacks do not apply
either. The Behavior attack [2] poses no risk under differen-
tial privacy definition because the access to the trace does not
significantly increase attacker’s knowledge: the attack only
reveals existence of known, popular servers in the trace, but
due to their popularity the attacker could guess their being
in the trace even without data sharing.

Many active attacks can violate our privacy requirements 2
and 3. For example, the attacker could learn communication
patterns in the following manner. He spoofs several packets
from X to Y transferring total of 123 bytes. Once the trace
is published, he uses Trol to group packets per host pair, and
ask for count of groups that exchanged 123 bytes. If the re-
sultis 0, X and Y talk to each other; if the result is 1 they do
not. A result higher than 1 means that connection size 123
is not unique, and the attacker selects another size and re-
peats the attack. Active attacks can also violate our privacy
requirement 4. For example the attacker can learn open ports
on host X by sending a packet to X to some rarely used des-
tination port, e.g., 78. Once trace is published, he uses Trol to
group packets per destination IP, and display a histogram of
destination port numbers per group. If port 78 is only seen
in attacker’s probes, host X is the only host whose histogram

will show this, and all other open ports. Otherwise, the at-
tacker chooses another port number and repeats the attack.

The above discussion illustrates that any information that
is unique to a single host or host pair is potentially privacy
sensitive because it could be used to identify it. In both pas-
sive and active attacks the unique information is known to
the attacker via an auxiliary channel such as interaction with
the host or spoofing a packet. But passive attacks do not in-
sert attacker’s traffic into the trace, i.e., they search for the
uniquely identifying information that is already present, while
active attacks insert traffic to create uniquely identifying in-
formation and use it to pinpoint hosts or pairs of interest.

To deal with active and passive attacks it is critical that any
piece of information presented to a user relates to a group of
hosts and diverse pairs, both in source and in destination di-
mension. This is a known principle in database privacy of
“result set restriction” aka “hiding in a crowd”. In statistical
databases each row refers to one person, and result set re-
striction is easily applied by requiring that any query must
reference no less than L rows and no more than N-L rows,
where N is the size of the database and L is the threshold set
by the administrator. Requiring result sets of at least size L
ensures hiding in the crowd in the case of a positive query -
asking directly for information of interest. Requiring sets of
at most size N-L ensures hiding when a query is negative —
asking for an opposite information than that of interest. For
example, assume an attacker knows that clock skew of host
X is a, and he seeks to learn if this host is in the trace. He
groups packets per host and calculates clock skew for each
group in variable cs. A positive query is SELECT WHERE
group.cs == a, with result size 1 proving the presence of
host X and result size 0 proving its absence. A negative
query is SELECT WHERE group.cs != a, with result size
N-1 proving the presence and N proving the absence.

Implementation of result set restriction in Trol is more com-
plex than that in statistical databases, because Trol’s expres-
siveness enables users to define, manipulate and display cus-
tom variables. A simple approach would associate with each
variable a set of source and destination IPs whose traffic was
used to calculate the variable. This would have too large a
memory cost and would limit scalability. We propose the fol-
lowing solution.

(1) Forbid IF statements except within a "FOREACH group”
statement. This ensures that a user can group packets per
host or per pair of hosts only via the GROUP BY statement.

(2) After a GROUP BY statement, the Trol interpreter cre-
ates a source IP and a destination IP table of size L for each
group, and crawls packets within the group to populate the
tables. A group that has less than L members in either table
is marked as fainted and its table is preserved. Otherwise, the
group is untainted and the tables are deleted. It may appear
that to prevent negative queries we must also check for too
large tables, but this would be too expensive. The next check
achieves the same goal at a lower cost.

(3) After a GROUP BY or a SELECT statement Trol ana-
lyzes either the packets left in the working set or the deleted
packets, whichever smaller, and populates new source IP and
destination IP tables of size L. If either table does not fill, the
result set restriction was violated and the query is rejected.

(4) A group variable is tainted if any group that calculates
an instance of this variable is tainted. No source or desti-
nation IP tables are needed since this information is already
remembered for the entire group.

T U T T U U
[0 =

src dst src dst src dst
1234 56.7.8 1234 56.78 1.234 9.10.7.8 iteration 1
U T U U
5]
src dst
1234 56.7.8 iteration 2
%1078
U] V]
teration

Figure 4: Illustration of binning.

(5) In output statements tainted variables can only be ac-
cessed via the BIN utility function. This function orders all
variable instances in increasing order of their value, then pla-
ces them into bins. If the variable was tainted its bin is also
marked as such, and its source and destination IP tables are
associated with the bin. Neighboring bins are merged if at
least one of them is tainted, and merge candidates are se-
lected using the nearest neighbor principle on a bin’s average
value. If two neighbors are equally close, the bin with fewer
members is selected for the merge. The merge combines the
source IP and destination IP tables from original bins. After
the merge, if both tables have L or more members the bin is
marked as untainted. Merging continues until there are no
tainted bins left.

We illustrate binning in Figure 4, and refer to bins by val-
ues of some tainted variable v they store. Let L=2. In the first
iteration, there are six bins with three of them (1, 5 and 7) be-
ing tainted. In the second iteration, bins 1 and 3 are merged,
which results in untainting because bin 3 was untainted. Bins
5 and 7 are also merged, but the result is still tainted because
it refers to only one source. In the third iteration bin 5, 7
merges with closest bin 9. The resulting bin is untainted and
the binning stops.

(6) Variables which were defined outside of a group state-
ment, may change their value inside the statement through
direct calculation only if all the variables on the right hand
side of the calculation are either untainted or accessed via
the BIN function, which returns the average of values in the
bin containing the variable instance. If an outside variable
changes its value within an IF statement, the same restriction
holds for the condition of that IF statement. For example,
assume an attacker knows that clock skew of host X is 55.
Code shown in Figure 5 would reveal the presence or the ab-
sence of host X in the trace via the value of the variable c. To
prevent this, G.skew must be binned in the IF statement.

To minimize overhead, binning is performed once per vari-

c=0
FOREACH group G DO
calculate G.skew
IF G.skew == 55 THEN
c=1
Fl
DONE

Figure 5: Privacy risk without binning.

RESTRICT RESULT ip.src >2 AND ip.dst > 2

ACCESS ip.src, ip.dst VIA hash, shareSubnet, isClose, isCommercial,
isAcademic, isISP

ACCESS ip.cont, ip.check, udp.check, tcp.check VIA hash

Figure 6: Privacy policy for our requirement set.

able. This requires that group operations be processed breadth-
first (across groups) instead of depth-first (within each group).

We now show that binning and utility functions provide
protection against most common attack classes. Consider
an attacker that seeks some uniquely identifying informa-
tion in the trace, through active or passive means. Use of
utility functions prevents attacks that directly access privacy-
sensitive data, where revealing even the smallest portion of
this data, such as the first octet of an IP address, may in-
crease provider’s risk. Binning alone cannot handle these at-
tacks because parts of sensitive information would still be re-
vealed when binned, and because binning IP addresses, con-
tents or checksums would destroy research utility. The rest
of attacks use auxiliary knowledge to infer uniquely identify-
ing information or link it to privacy-sensitive data. Binning
prevents inference of any information that does not relate to
a large enough group of hosts, thus handling most of active
and passive attacks. What remains are two classes of attacks
that can infer desired information from results that relate to
large groups of hosts. The first class, known as trackers [10],
asks successive queries that narrow down the information
of interest but always relate to a large enough group. For
example, if the uniquely identifying information is connec-
tion size of 123 the first query may ask for count of all con-
nections with size >123, and the second would either count
connections with size > 122 or connections with size < 123.
A known protection from trackers [10] is to log result sets
and audit them either for a large overlap or for a small dis-
joint set. Audits can be per user or for all users. We plan
to implement at least per-user audits in the Trol interpreter,
but we leave their design for future work. The second class
of attacks, we call fakers, injects identifying information for
spoofed, non-existing IPs to form a large enough result set
with the desired unique identifier. For example, if L=2 and
the attacker looks for the clock skew of 55 he inserts a fake
host with clock skew 55 into the trace by spoofing its traf-
fic. Queries that relate to clock skew 55 either have a large
enough result set, signaling the presence of a real host with
clock skew 55, or are rejected, signaling the host’s absence.
Investigating how to handle fakers is part of our future work.

3.5 Privacy Policy

The privacy policy specification language has two types
of statements: (1) Result set restriction specifications that list
packet fields that must have L unique values in the result set.
(2) Operation restriction specifications that deny access to a
list of packet fields and variables except via the list of utility
functions. Figure 6 shows the privacy policy for our chosen
set of privacy requirements, assuming the result set size of
2. A data provider that wants to further restrict its privacy
policy would add ACCESS statements to limit operations on
fields she regards as privacy-sensitive, possibly also adding
new utility functions to allow some limited access to these
fields.

4. LESSONS FROM DATABASES

Databases have faced similar problems related to sharing
non-private data from a database of patient visits to a hospi-
tal or from census data [11, 12, 13]. Solutions to privacy/utility
tradeoff can broadly be classified as sanitized databases or
statistical databases. We now summarize similarities and dif-
ferences between sharing database and trace data.

(1) Both database and trace records contain some identi-
fying information (e.g., a person’s name vs packet’s source
and destination IPs), and some sensitive information (e.g., a
person’s illness vs packet’s contents). Statistical databases
remove identifying information and allow aggregate oper-
ations on sensitive fields, but prevent disclosure of any in-
dividual field values. Sanitized databases disclose sensitive
fields but remove identifying information. Trace sharing usu-
ally removes or obscures sensitive fields, obscures identify-
ing information, and discloses non-sensitive fields.

(2) Statistical databases allow only a very small set of ag-
gregate queries, such as max, sum, mean, etc. on all fields.
Their utility remains high even if individual cells or outputs
to queries are modified or perturbed to protect privacy [10],
as long as results to aggregate queries remain close to those
obtained on the original data. On the other hand, modify-
ing packet fields or perturbing outputs would greatly reduce
trace utility for many users.

(3) Removing identifying data from sanitized databases is
not enough, since auxiliary information can be used to infer
identity and link a person to sensitive information [1]. Pro-
posed solutions heavily modify released fields to ensure that
(a) each person resembles & other people [11], (b) each group
of k similar people has [well represented values in sensitive
attributes [13] and (c) deletions and insertions do not vio-
late conditions (a) and (b) [12]. Such major data modification
would seriously reduce research utility of traffic traces. We
believe that our binning, which achieves k-similarity from
(a), is sufficient for network traces because of natural traffic
diversity. For example, it may happen that some organiza-
tion opens the port 999 on each Web server. The queries for
count of hosts with ports 80 and 999 open, and hosts with
port 80 open, would reveal this and pose a privacy risk. But
the risk would greatly diminish if there were a single Web
server with closed port 999. Based on our experience with
traces we intuit but cannot yet prove that any uniformity of
host features in network traffic is either rare or well-known
(which does not pose a risk under differential privacy).

(4) Secure queries with result set restriction and auditing
have been proposed for statistical databases [10]. Their main
drawback was that they required auditing to defeat trackers
and it was expensive to implement [10]. Based on our trace
processing experience to date, we estimate that cost of audit-
ing in the Trol interpreter will be acceptable. For example,
backbone traces from MAWI [14] contain less than million
IPs each. Thus a million-entry hash table could store infor-
mation about IPs in the final working sets, and be used to
calculate overlaps and set differences. Assuming a collision-
free hash function, entries only need to contain bit arrays,
with each bit representing presence of an IP in a result set.

S. RELATED WORK

In publication [7] authors discuss a design of a trace pro-
cessing framework called SC2D, and a high-level query lan-
guage. Unlike our automated analysis of privacy risk, in

SC2D data providers must manually analyze and approve
queries. Publication [7] does not present a language specifi-
cation to which we could compare our Trol design.

Tcpdpriv [15] sanitizes a tcpdump trace by transform-
ing it into another trace in the same format, with some fields
removed or anonymized. The tool has a wealth of options
that enable fine-tuning of the information to be preserved in
the sanitized trace. Ipsumdump [16] and Ipaggregate [17]
summarize information from a trace into a human-readable
format. Both tools can also perform address anonymization,
traffic filtering and traffic sampling, with fine-grained op-
tions to select the information to be preserved. In [6] authors
examine the problem of trace sanitization in great depth and
point out that a straightforward sanitization leaves much in-
formation that can be a user privacy or a collection site se-
curity risk. They describe a fine-grained sanitization policy
developed for their private traces, to facilitate their release to
public, and a sanitization tool that applies the policy. In [18]
authors investigate the problem of parsing and sanitizing the
application content. The sanitization tool assembles the pay-
load to generate application content, applies the policy script
to the trace to sanitize it, and converts everything back to the
tcpdump format. The authors also propose a detailed sani-
tization policy for FTP data, and discuss many fine-grained
decisions to ensure safety from sophisticated attacks. Trol
operations for application headers will build on work in [18].

We are aware of two projects that design a high-level en-
vironment for online trace sanitization. CoMo project [19]
builds an open infrastructure for network monitoring. Users
are allowed to post customized queries to the system, by pro-
viding C-language plug-ins to the CoMo API. The security is
regulated through user privileges, so a given user can only
post a subset of queries for which he has been authorized, for
a set of packet fields. LOBSTER project [20] defines an API
for a flexible trace anonymization according to the privileges
and the requirements of user applications. The API contains
many built-in anonymization functions.

6. CONCLUSION

From current attacks on sanitization and low usage of pub-
lic traces it is clear that sanitization does not successfully re-
solve the privacy/utility tradeoff in trace data sharing. In
this paper we presented a novel paradigm that involves pub-
lishing a query language and a portal that evaluates user
queries on original traces. Secure queries have potential to
improve both research utility of traces and privacy guaran-
tees for data providers. Much work remains to be done on
the query language specification and implementation. One
critically important issue is if Trol’s query processing will
have a reasonable overhead (memory-wise and CPU-wise)
for very large trace files. We are currently implementing the
Trol interpreter and expect to evaluate its overhead shortly.

7. REFERENCES

[1] Cynthia Dwork. Differential Privacy. In Proceedings of
the 33rd International Colloquium on Automata, Languages
and Programming, 2006.

[2] S. Coull, C. Wright, E. Monrose, M. Collins, and
M. Reiter. Playing Devil’s Advocate: Inferring Sensitive
Information from Anonymized Network Traces. In
Proceedings of the Network and Distributed System Security
Symposium, February 2007.

[3] Q.Sun, D.R. Simon, Y. Wang, W. Russell, V. N.
Padmanabhan, and L. Qiu. Statistical Identification of
Encrypted Web Browsing Traffic. In Proceedings of the
IEEE Symposium on Security and Privacy, 2002.

[4] S. Coull, M.P. Collins, C.V. Wright, F. Monrose, and
M. Reiter. On Web Browsing Privacy in Anonymized
NetFlows. In Proceedings of the USENIX Security
Symposium, August 2007.

[5] T. Kohno, A. Broido, and kc Claffy. Remote Physical
Device Fingerprinting. In Proceedings of the IEEE
Symposium on Security and Privacy, 2005.

[6] Ruoming Pang, Mark Allman, Vern Paxson, and Jason
Lee. The devil and packet trace anonymization. ACM
SIGCOMM Computer Communications Review,
36(1):29—38, 2006.

[7] J C Mogul and M Arlitt. Sc2d: An alternative to trace
anonymization. In Proceedings of the SIGCOMM 2006
Workshop on Mining Network Data, 2006.

[8] Vern Paxson. Trace sanitization scripts. http://ita.
ee.lbl.gov/html/contrib/sanitize.html.

[9] J. Xu, J. Fan, M. H. Ammar, , and S. B. Moon.
Prefix-Preserving IP Address Anonymization:
Measurement-Based Security Evaluation and a New
Cryptography-Based Scheme. In Proceedings of the IEEE
International Conference on Network Protocols, 2002.

[10] Nabil R. Adam and John C. Worthmann.
Security-control methods for statistical databases: a
comparative study. ACM Computing Surveys,
21(4):515-556, 1989.

[11] L. Sweeney. k-anonymity: a model for protecting
privacy. International Journal on Uncertainty, Fuzziness
and Knowledge-based Systems, 10(5):557-570, 2002.

[12] Xiaokui Xiao and Yufei Tao. M-invariance: towards
privacy preserving re-publication of dynamic datasets.
In Proceedings of the International Conference on
Management of Data, 2007.

[13] Ashwin Machanavajjhala, Johannes Gehrke, Daniel
Kifer, and Muthuramakrishnan Venkitasubramaniam.
I-Diversity: Privacy Beyond k-Anonymity. In
Proceedings of the 22nd IEEE International Conference on
Data Engineering, 2006.

[14] MAWI Working Group Traffic Archive.
http://tracer.csl.sony.co. jp/mawi/.

[15] Greg Minshall. tcpdpriv tool. http://ita.ee.lbl.
gov/html/contrib/tcpdpriv.html.

[16] Eddie Kohler. Ipsumdump tool. http:
//www.cs.ucla.edu/~kohler/ipsumdump/.

[17] Eddie Kohler. Ipaggregate tool.
http://www.cs.ucla.edu/~kohler/
ipsumdump/aggcreateman.html.

[18] Ruoming Pang and Vern Paxson. A High-level
Programming Environment for Packet Trace
Anonymization and Transformation. In Proceedings of
ACM SIGCOMM, 2003.

[19] Gianluca Iannacone. CoMo: An Open Infrastructure for
Network Monitoring — Research Agenda.
http://como.intel-research.net/pubs/
como.agenda.pdf.

[20] Lobster web page. http://www.ist-lobster.
org/publications/deliverables/D1l.la.pdf.

