High-Performance Embedded Systems-on-a-Chip

Lecture 17: Scheduling

Sanjay Rajopadhye

Computer Science, Colorado State University
Limitations of Systolic Arrays

Only a (very small) proper subset of SAREs: Those that
- are Serializable,
- are Localizable,
- correspond to a Single Equation, and
- admit a One-dimensional schedule.

Question: What is beyond systolic arrays?
For each point in domain of each variable, determine:

- A time instant ⇒ schedule
- A place ⇒ and allocation
- processor
- memory

Transform P-SARE so that indices denote either
- time,
- processor, or
- memory address

Generate code (or HDL, we hope)
Two Orthogonal Issues

- Static Analysis: what transformation to apply
 - scheduling
 - processor (& memory) allocation
- Program Transformation: manipulating the SARE
 - Rules to modify the SARE (Change of Basis)
 - Code Generation (how to interpret the transformed SARE)
Golden Rule of Static Analysis

The dependence graph cannot be explicitly constructed

- Too large
- Not (fully) known at compile time – parameters
- Explicitly constructed results are not useful

Implication: use compact information (reduced dependence graph)
Key Problem: Scheduling

- Definition: A function t such that whenever $U[x]$ depends on $V[y]$, then $t(U, x) > t(V, y)$.

- Affine schedules:

$$t(U, x) \equiv \lambda^U x + \alpha^U$$

$$= \lambda_1^U x_1 + \ldots + \lambda_n^U x_n + \alpha^U$$

Geometric interpretation: all points executed at time $t_0 = \lambda^U z + \alpha^U$ belong to isotemporal hyperplane with normal vector λ^U
Scheduling a (single) URE

\[V[z] = \{ z \in D \} : f(V[z + d_1], \ldots, V[z + d_s] \]

• \(\langle \lambda, \alpha \rangle \) is valid iff for \(k = 1 \ldots s \), and \(\forall z \in D \)

\[
\lambda z + \alpha > \lambda(z + d_k) + \alpha \\
= \lambda z + \lambda d_k
\]

i.e., \(\lambda d_k < 0 \)

• Finite number of constraints, independent of domain size.

Scheduling \(\equiv \) Linear Programming

Geometric view: Choose the hyperplanes so that dependences point backwards
Example

\[X[i, j] = g(X[i - 1, j], X[i, j - 1]) \]
\[t(i, j) \equiv ai + bj + \alpha \]

Schedule validity conditions

\[[a, b][0, -1]^T < 0 \]
\[[a, b][-1, 0]^T < 0 \]
\[\alpha \geq 0 \]

i.e., \(\{a, b, \alpha | a, b > 0, \alpha \geq 0\} \)

Optimal schedule: \(t(i, j) = i + j \)
Scheduling an SURE

- Single schedule for all variables
 Not general enough: some well defined SURE’s don’t admit such a schedule (e.g. the convolution example)

- Shifted linear schedules
 Allow the α^U to be different for each variable, U, but same λ

- Variable dependent schedules: different slopes for different variables

- Multidimensional schedules
Limits of shifted linear schedules

\[X[i, j] = g(X[i - 1, j + 1]) \]

\[Y[i, j] = h(Y[i + 1, j - 1]) \]

This SURE cannot be scheduled with same-slope lines for both \(X \) and \(Y \).
A less contrived example

\[X[i, j] = g(X[i - 1, j + 1]) \]
\[Y[i, j] = h(Y[i + 1, j - 1], X[i, j]) \]
\[t_X(i, j) = a_X i + b_X j + \alpha_X \]
\[t_Y(i, j) = a_Y i + b_Y j + \alpha_Y \]

Optimal solution

\[t_X(i, j) = i \]
\[t_Y(i, j) = i + 2j + 1 \]
Exercise

Find length of longest path reaching the green (cf. red) node at $[i, j]$

\[
X[i, j] = f(X[i - 1, j + 1], Y[i, j - 1])
\]
\[
Y[i, j] = g(X[i, j], Y[i + 1, j - 1])
\]