Systolic Synthesis

With mathematical specification (SARE + reductions), do the following (not necessarily in order):
Systolic Synthesis

With mathematical specification (SARE + reductions), do the following (not necessarily in order):

1. **Serialize** reductions and **Align** inputs and outputs
2. **Localize** dependences
3. **Schedule** the SARE
4. **Allocate** the computation to processors
5. **Transform** the SARE
6. **Generate** the HDL
Example: Convolution

Initial specification:

\[y_i = \sum_{j=0}^{n-1} w_j * x_{i-j} \]
Serialization & Alignment

Replace (unbounded fan-in) \sum by sequence of binary additions. Align input and output vars.

$$y_i = Y[i, n - 1]$$

$$Y[i, j] = \begin{cases}
 w_j * x_{i-j} & j = 0 \\
 Y[i, j-1] + w_j * x_{i-j} & j > 0
\end{cases}$$
Localization/Uniformization

Remove unbounded fan-out (i.e., “long”) dependences.

\[
\begin{align*}
y_i &= Y[i, n - 1] \\
Y[i, j] &= \begin{cases}
 j = 0 &: W[i, j] \ast X[i, j] \\
 j > 0 &: Y[i, j - 1] + W[i, j] \ast X[i, j]
\end{cases} \\
X[i, j] &= \begin{cases}
 j = 0 &: x_i \\
 j > 0 &: X[i - 1, j - 1]
\end{cases} \\
W[i, j] &= \begin{cases}
 i = 0 &: w_j \\
 i > 0 &: W[i - 1, j]
\end{cases}
\end{align*}
\]
Scheduling & Allocation
Scheduling & Allocation

A date: $t(i, j) = i + j$
Scheduling & Allocation

A date: $t(i, j) = i + j$

A place: $a(i, j) = j$
Geometric Transformation

\[T = (i, j \rightarrow i + j, j) \]

\[y_i = Y[i, n - 1] \]

\[Y[i, j] = \begin{cases}
 j = 0 & : W[i, j] \times X[i, j] \\
 j > 0 & : Y[i - 1, j - 1] + W[i, j] \times X[i, j]
\end{cases} \]

\[X[i, j] = \begin{cases}
 j = 0 & : x_i \\
 j > 0 & : X[i - 2, j - 1]
\end{cases} \]

\[W[i, j] = \begin{cases}
 i = j & : w_j \\
 i > j & : W[i - 1, j]
\end{cases} \]
Generate HDL
SREs as an HDL

Finite state machine:

\[
\text{Next State} = \mathcal{N}(\text{Current state}, \text{Current input})
\]

\[
\text{Next Output} = \mathcal{O}(\text{Current state}, \text{Current input})
\]
SREs as an HDL

Finite state machine:

Next State \(= \mathcal{N}(\text{Current state}, \text{Current input}) \)
Next Output \(= \mathcal{O}(\text{Current state}, \text{Current input}) \)

As an SRE:

\[
\text{State}(t) = \begin{cases}
 t = 0 & \text{Init} \\
 t > 0 & \mathcal{N}(\text{State}(t - 1), \text{Input}(t - 1))
\end{cases}
\]

\[
\text{Output}(t) = \begin{cases}
 t > 0 & \mathcal{N}(\text{State}(t - 1), \text{Input}(t - 1))
\end{cases}
\]
SREs as a Systolic Array HDL

\[\text{State}(t, z) = \begin{cases}
 t = 0 : \text{Init}(z) \\
 t > 0 : \mathcal{N}(\text{State}(t - 1, z + \delta_z), \text{Input}(t - 1, z), \ldots)
\end{cases} \]

\[\text{Output}(t, z) = \begin{cases}
 t = 0 : \text{Undefined} \\
 t > 0 : \mathcal{N}(\text{State}(t - 1, z + \delta_z'), \text{Input}(t - 1, z), \ldots)
\end{cases} \]
Exercises

- Derive the convolution systolic array in Quinton-Robert. Hint: First *describe* the architecture and then try to reverse-engineer the design.

- Explore different allocation functions and schedules and derive alternate convolution array. Compare their respective performances in terms of area (number of processors), time, throughput and work.

- Describe a URE for the bubble sort algorithm (note: you cannot have data-dependent conditions). Derive two or more systolic arrays for it.

- Describe a URE for the band-matrix multiplication problem and derive systolic arrays for it.
Recall the rules for the change-of-basis transformations of SRE’s. Consider the following SRE:

\[
X[z] = \{ z \in D_X \} : g(\ldots, X[f_{xx}(z)], Y[f_{xy}(z)])
\]
\[
Y[z] = \{ z \in D_Y \} : h(\ldots, X[f_{yx}(z)], Y[f_{yy}(z)])
\]

and a bijective affine function, \(\mathcal{T} : z \mapsto Tz + t \) where \(T \) is an integer unimodular matrix, and \(t \) is a vector. Show that when all the dependence functions are uniform (i.e., the SRE is actually a SURE) applying the same transformation, \(\mathcal{T} \), to both the variables \(X \) and \(Y \), the resulting system remains uniform. Determine the new dependence vectors. Can you think of a (slightly) more general transformation that retains this closure property?