High-Performance Embedded Systems-on-a-Chip

Sanjay Rajopadhye
Computer Science, Colorado State University

Lecture 6: GKT Array (concl.)
Problem Specification

Compute $C[1, n + 1]$, where, for $1 \leq i < j \leq n + 1$

$$C[i, j] = \begin{cases}
 i + 1 = j : w_{i,j} \\
 i + 1 < j : w_{i,j} + \min_{i<k<j} (C[i, k] + C[k, j])
\end{cases}$$
Observations/Questions

- Total volume of computation: $\approx \frac{1}{6} n^3$

- Total I/O volume: $\approx \frac{1}{2} n^2$ (actually n^2)

- Triangular array: PE $[i, j]$ computes $C[i, j]$

- What values are used to compute a given $C[i, j]$?

- Where is a given $C[i, j]$ used?

- With whom is a given $C[i, j]$ “combined”?

- Where is it combined?
How the array works

- $C[i, j]$ is computed at time $2(j - i)$
- It is then sent horizontally and vertically, travelling at a rate of one PE per cycle for exactly $j - i$ more cycles.
- Afterwards, it travels at a slower rate of one PE every two cycles.
- So every value meets exactly the right “partner” at the right place.
How the array works

- \(C[i, j] \) is computed at time \(2(j - i) \)
- It is then sent horizontally and vertically, travelling at a rate of one PE per cycle for exactly \(j - i \) more cycles.
- Afterwards, it travels at a slower rate of one PE every two cycles.
- So every value meets exactly the right “partner” at the right place.
- But \textbf{why on earth} does it work
How the array works

- $C[i, j]$ is computed at time $2(j - i)$

- It is then sent horizontally and vertically, travelling at a rate of one PE per cycle for exactly $j - i$ more cycles.

- Afterwards, it travels at a slower rate of one PE every two cycles.

- So every value meets exactly the right “partner” at the right place.

- But **why on earth** does it work and **how on earth** did they design it?
(Quadratic) Scheduling

- If reductions (of \min) can be computed *instantaneously*
(Quadratic) Scheduling

- If reductions (of \min) can be computed \textit{instantaneously} $t(i, j) = j - i$.
If reductions (of \min) can be computed \textit{instantaneously} $t(i, j) = j - i$. But realistically, reduction for $C[i, j]$ needs $\Theta(j - i)$ steps
(Quadratic) Scheduling

- If reductions (of \(\min \)) can be computed \textit{instantaneously} \(t(i, j) = j - i \). But realistically, reduction for \(C[i, j] \) needs \(\Theta(j - i) \) steps.

- So when can each reduction \textit{start}?
(Quadratic) Scheduling

- If reductions (of \(\min \)) can be computed *instantaneously* \(t(i, j) = j - i \). But realistically, reduction for \(C'[i, j] \) needs \(\Theta(j - i) \) steps

- So when can each reduction *start*? Oops :-(
(Quadratic) Scheduling

• If reductions (of \(\min \)) can be computed \textit{instantaneously} \(t(i, j) = j - i \). But realistically, reduction for \(C[i, j] \) needs \(\Theta(j - i) \) steps

• So when can each reduction \textbf{start}? \small{Oops :-("}

• What is the \textbf{serialization order}: \(k = i + 1 \) to \(j - 1 \)
(Quadratic) Scheduling

• If reductions (of \(\min \)) can be computed instantaneously \(t(i, j) = j - i \). But realistically, reduction for \(C[i, j] \) needs \(\Theta(j - i) \) steps.

• So when can each reduction start? Oops :-(

• What is the serialization order: \(k = i + 1 \) to \(j - 1 \) or \(k = j - 1 \) down to \(i + 1 \)?
(Quadratic) Scheduling

- If reductions (of \min) can be computed
 instantaneously $t(i, j) = j - i$. But realistically, reduction for $C[i, j]$ needs $\Theta(j - i)$ steps

- So when can each reduction **start**?
 *Oops :-(

- What is the **serialization order**: $k = i + 1$ to $j - 1$ or $k = j - 1$ down to $i + 1$? In either case, **quadratic schedule**.
Affine Schedule

- Solution: *Middle serialization* (let $\Delta = j - i$):

\[
C_{i,j} = \frac{\Delta}{2} \min_{k=1}^{\Delta/2} \left((C_{i,i+k} + C_{i+k,j}), (C_{i,j-k} + C_{j-k,j}) \right)
\]

- Serialize along *decreasing* k. Computation of $C_{i,j}$ *takes* $\Delta/2$ (twice as expensive) steps.
Affine Schedule

• Solution: **Middle serialization** (let $\Delta = j - i$):

$$C_{i,j} = \min_{k=1}^{\Delta/2} ((C_{i,i+k} + C_{i+k,j}), (C_{i,j-k} + C_{j-k,j}))$$

• Serialize along **decreasing** k. Computation of $C_{i,j}$

 takes $\Delta/2$ (twice as expensive) steps.

• $C_{i,j}$ is computed at $2\Delta = 2(j - i)$.

• Two (or four) fold slowdown, but **affine** schedule.
Validity of the schedule

\[C_{i,j} = \min_{k=1}^{\Delta/2} \left((C_{i,i+k} + C_{i+k,j}), (C_{i,j-k} + C_{j-k,j}) \right) \]

- Computation of \(C_{i,j} \) must start at \(1.5\Delta \)
Validity of the schedule

\[C_{i,j} = \min_{k=1}^{\Delta/2} \left((C_{i,i+k} + C_{i+k,j}), (C_{i,j-k} + C_{j-k,j}) \right) \]

- Computation of \(C_{i,j} \) must start at \(1.5\Delta \)
- Its \(k \)-th step
Validity of the schedule

\[C_{i,j} = \min_{k=1}^{\Delta/2} \left((C_{i,i+k} + C_{i+k,j}), (C_{i,j-k} + C_{j-k,j}) \right) \]

- Computation of \(C_{i,j} \) **must start** at \(1.5\Delta \)

- Its \(k \)-th step, which is computed at \(2\Delta - k \)
Validity of the schedule

\[C_{i,j} = \frac{\Delta/2}{\min_{k=1}^\Delta ((C_{i,i+k} + C_{i+k,j}), (C_{i,j-k} + C_{j-k,j}))} \]

- Computation of \(C_{i,j} \) \textbf{must start} at \(1.5\Delta \)

- Its \(k \)-th step, which is computed at \(2\Delta - k \), needs \(C_{i,i+k}, C_{i+k,j}, C_{i,j-k} \) and \(C_{j-k,j} \)
Validity of the schedule

\[C_{i,j} = \min_{k=1}^{\Delta/2} ((C_{i,i+k} + C_{i+k,j}), (C_{i,j-k} + C_{j-k,j})) \]

- Computation of \(C_{i,j} \) **must start** at 1.5\(\Delta \)

- Its \(k \)-th step, which is computed at \(2\Delta - k \), needs \(C_{i,i+k}, C_{i+k,j}, C_{i,j-k} \) and \(C_{j-k,j} \)

- which are computed respectively at \(2k \)
Validity of the schedule

\[C_{i,j} = \min_{k=1}^{\Delta/2} (C_{i,i+k} + C_{i+k,j}, (C_{i,j-k} + C_{j-k,j})) \]

- Computation of \(C_{i,j} \) **must start** at \(1.5\Delta \)
- Its \(k \)-th step, which is computed at \(2\Delta - k \), needs \(C_{i,i+k}, C_{i+k,j}, C_{i,j-k} \) and \(C_{j-k,j} \)
- which are computed respectively at \(2k, 2(\Delta - k) \)
Validity of the schedule

\[C_{i,j} = \min_{k=1}^{\Delta/2} ((C_{i,i+k} + C_{i+k,j}), (C_{i,j-k} + C_{j-k,j})) \]

- Computation of \(C_{i,j} \) must start at \(1.5\Delta \)
- Its \(k \)-th step, which is computed at \(2\Delta - k \), needs \(C_{i,i+k}, C_{i+k,j}, C_{i,j-k} \) and \(C_{j-k,j} \)
- which are computed respectively at \(2k, 2(\Delta - k), 2(\Delta - k) \) and \(2k \)
Validity of the schedule

\[C_{i,j} = \frac{\Delta}{2} \min_{k=1}^{\Delta/2} ((C_{i,i+k} + C_{i+k,j}), (C_{i,j-k} + C_{j-k,j})) \]

- Computation of \(C_{i,j} \) must start at \(1.5\Delta \)
- Its \(k \)-th step, which is computed at \(2\Delta - k \), needs \(C_{i,i+k}, C_{i+k,j}, C_{i,j-k} \) and \(C_{j-k,j} \)
- which are computed respectively at \(2k, 2(\Delta - k), 2(\Delta - k) \) and \(2k \)
- They are all smaller than \(2\Delta - k \)
Usage

- $C_{i,j}$ is used by all points to its right (on the same row) and above it (on the same column)
Usage

- $C_{i,j}$ is used by all points to its right (on the same row) and above it (on the same column)

- Consider only the row (column is analogous)
Usage

- $C_{i,j}$ is used by all points to its right (on the same row) and above it (on the same column).

- Consider only the row (column is analogous) i.e., the first and third arguments.
Usage

- $C_{i,j}$ is used by all points to its right (on the same row) and above it (on the same column).

- Consider only the row (column is analogous) i.e., the \textit{first} and \textit{third} arguments.

\[
C_{i,j'} = \min_{k=1} \left(\frac{(j'-i)}{2}, \left(C_{i,i+k} + C_{i+k,j'} \right), \left(C_{i,j'} - k + C_{j'-k,j'} \right) \right)
\]
Usage

- $C_{i,j}$ is used by all points to its right (on the same row) and above it (on the same column).
- Consider only the row (column is analogous) i.e., the first and third arguments.

$$C_{i,j'} = \min_{k=1} \left(\frac{(j'-i)}{2}, (C_{i,i+k} + C_{i+k,j'}), (C_{i,j'} - k + C_{j'-k,j'}) \right)$$

- For some $j' > j$, $C_{i,j'}$ uses $C_{i,j}$ as its first argument if $j = i + k$ and $1 \leq k \leq \frac{j'-i}{2}$.
Usage

- $C_{i,j}$ is used by all points to its right (on the same row) and above it (on the same column).

- Consider only the row (column is analogous) i.e., the first and third arguments.

\[
C_{i,j'} = \min_{k=1}^{(j'-i)/2} ((C_{i,i+k} + C_{i+k,j'}), (C_{i,j'-k} + C_{j'-k,j'}))
\]

- For some $j' > j$, $C_{i,j'}$ uses $C_{i,j}$ as its first argument if $j = i + k$ and $1 \leq k \leq \frac{j'-i}{2}$, i.e., if $j - i \geq 1$ (obviously true) and
Usage

- \(C_{i,j} \) is used by all points to its right (on the same row) and above it (on the same column)
- Consider only the row (column is analogous) i.e., the first and third arguments.

\[
C_{i,j'} = \frac{(j'-i)}{2} \min_{k=1} \left((C_{i,i+k} + C_{i+k,j'}), (C_{i,j'} - k + C_{j'-k,j'}) \right)
\]

- For some \(j' > j \), \(C_{i,j'} \) uses \(C_{i,j} \) as its first argument if \(j = i + k \) and \(1 \leq k \leq \frac{j'-i}{2} \), i.e., if \(j - i \geq 1 \) (obviously true) and \(j' \geq j + \Delta \)
Usage

- $C_{i,j}$ is used by all points to its right (on the same row) and above it (on the same column)

- Consider only the row (column is analogous) i.e., the first and third arguments.

$$C_{i,j'} = \min_{k=1}^{(j'-i)/2} \ (C_{i,i+k} + C_{i+k,j'}, \ C_{i,j'-k} + C_{j'-k,j'})$$

- For some $j' > j$, $C_{i,j'}$ uses $C_{i,j}$ as its first argument if $j = i + k$ and $1 \leq k \leq \frac{j'-i}{2}$, i.e., if $j - i \geq 1$ (obviously true) and $j' \geq j + \Delta$, and as its third argument for $j + 1 \leq j' \leq j + \Delta$
Data Flow

- For some $j < j' \leq j + \Delta$, $C_{i,j'}$ uses $C_{i,j}$ as its \textbf{third} argument
Data Flow

- For some $j < j' \leq j + \Delta$, $C_{i,j'}$ uses $C_{i,j}$ as its third argument, (i.e., $j = j' - k$) at time instant $2(j' - i) - k$
Data Flow

- For some $j < j' \leq j + \Delta$, $C_{i,j'}$ uses $C_{i,j}$ as its third argument, (i.e., $j = j' - k$) at time instant

 $2(j' - i) - k = 2\Delta + 1$
Data Flow

- For some \(j < j' \leq j + \Delta \), \(C_{i,j'} \) uses \(C_{i,j} \) as its \textbf{third} argument, (i.e., \(j = j' - k \)) at time instant \(2(j' - i) - k = 2\Delta + (j' - j) \)

- For some \(j' \geq 2\Delta \), \(C_{i,j'} \) uses \(C_{i,j} \) as its \textbf{first} argument, (i.e., \(j = i + k \)) at time instant \(2(j' - i) - k \)
For some $j < j' \leq j + \Delta$, $C_{i,j'}$ uses $C_{i,j}$ as its third argument, (i.e., $j = j' - k$) at time instant $2(j' - i) - k = 2\Delta + (j' - j)$.

For some $j' \geq 2\Delta$, $C_{i,j'}$ uses $C_{i,j}$ as its first argument, (i.e., $j = i + k$) at time instant $2(j' - i) - k = 2j' - i - j$.
Data Flow

- For some $j < j' \leq j + \Delta$, $C_{i,j'}$ uses $C_{i,j}$ as its third argument, (i.e., $j = j' - k$) at time instant $2(j' - i) - k = 2\Delta + (j' - j)$

- For some $j' \geq 2\Delta$, $C_{i,j'}$ uses $C_{i,j}$ as its first argument, (i.e., $j = i + k$) at time instant $2(j' - i) - k = 2j' - i - j = 2\Delta$
Data Flow

- For some $j < j' \leq j + \Delta$, $C_{i,j'}$ uses $C_{i,j}$ as its third argument, (i.e., $j = j' - k$) at time instant

 $$2(j' - i) - k = 2\Delta + (j' - j)$$

- For some $j' \geq 2\Delta$, $C_{i,j'}$ uses $C_{i,j}$ as its first argument, (i.e., $j = i + k$) at time instant

 $$2(j' - i) - k = 2j' - i - j = 2\Delta + \Delta$$
Data Flow

- For some $j < j' \leq j + \Delta$, $C_{i,j'}$ uses $C_{i,j}$ as its third argument, (i.e., $j = j' - k$) at time instant $2(j' - i) - k = 2\Delta + (j' - j)$

- For some $j' \geq 2\Delta$, $C_{i,j'}$ uses $C_{i,j}$ as its first argument, (i.e., $j = i + k$) at time instant $2(j' - i) - k = 2j' - i - j = 2\Delta + \Delta + (2(j' - (j + \Delta)))$
Exercise (CoB and SUREs)

Recall the rules for the change-of-basis transformations of SRE’s. Consider the following SRE:

\[
X[z] = \{ z \in D_X \} : g(\ldots, X[f_{xx}(z)], Y[f_{xy}(z)])
\]

\[
Y[z] = \{ z \in D_Y \} : h(\ldots, X[f_{yx}(z)], Y[f_{yy}(z)])
\]

and a bijective affine function, \(T : z \mapsto Tz + t \) where \(T \) is an integer unimodular matrix, and \(t \) is a vector. Show that when all the dependence functions are uniform (i.e., the SRE is actually a SURE) applying the same transformation, \(T \), to both the variables \(X \) and \(Y \), the resulting system remains uniform. Determine the new dependence vectors. Can you think of a (slightly) more general transformation that retains this closure property?
Solution

Note: $T^{-1}(z) = T^{-1}z - T^{-1}t$, since
Solution

Note: $T^{-1}(z) = T^{-1}z - T^{-1}t$, since $T^{-1}(Tz + t) - T^{-1}t = z$
Solution

Note: $\mathcal{T}^{-1}(z) = T^{-1}z - T^{-1}t$, since $T^{-1}(Tz + t) - T^{-1}t = z$

Applying CoB by \mathcal{T} to both variables

$X[z] = \{z \in \mathcal{T}(D_X)\} : g(\ldots, X[\mathcal{T} \circ f_{xx} \circ \mathcal{T}^{-1}(z)],$

$\quad Y[\mathcal{T} \circ f_{xy} \circ \mathcal{T}^{-1}(z)])$

$Y[z] = \{z \in \mathcal{T}(D_Y)\} : h(\ldots, X[\mathcal{T} \circ f_{yx} \circ \mathcal{T}^{-1}(z)],$

$\quad Y[\mathcal{T} \circ f_{yy} \circ \mathcal{T}^{-1}(z)])$
Each new dependence is of the form $T \circ f \circ T^{-1}(z)$, where f is uniform, i.e., $f(z) = z + \delta$

$$T \circ f \circ T^{-1}(z) = Tf(T^{-1}z - T^{-1}t) + t$$
$$= T(T^{-1}z - T^{-1}t + \delta) + t$$
$$= (z - t + T\delta) + t$$
$$= z + T\delta$$