
CS 555: DISTRIBUTED SYSTEMS 
Department of Computer Science 
Colorado State University 

SPRING 2024 
URL: http://www.cs.colostate.edu/~csx55 
Professor: Shrideep Pallickara 

 

Page 1 of 6 

 
PROGRAMMING ASSIGNMENT 3 

IMPLEMENTING THE CHORD PEER TO PEER NETWORK 
Version 1.1 

 
DUE DATE: Wednesday, April 17th, 2024 @ 8:00 pm 
 
OBJECTIVE 
The objective of this assignment is to build a simple peer to peer network where individual peers have 
32-bit integer identifiers. This assignment has several sub-items associated with it: this relates to 
constructing the logical overlay and traversing the network efficiently to store and retrieve content. This 
assignment will be modified to clarify any questions that arise, but the crux of this assignment will not 
change. 
 
Grading: This assignment will account for 15 points towards your cumulative course grade. There 
are several components to this assignment, and the points breakdown is listed in the remainder of the 
text.  The lowest score that you can get for this assignment is 0. The deductions will not result in a 
negative score for this particular assignment. 
 

1 Peer Nodes 
Peer nodes are identified using peerIDs. Each peerID is computed by calling the hashCode() method on 
the string <IP>:<port>. Where IP is the IP address of the node and port is the port number the node’s 
ServerSocket is listening on. Since the pair IP and port is unique within the system, each peerID should 
be unique with a very small chance (1 in 4 billion) of a collision. There is 1 point for generating the peer 
ID, registering it with the discovery node, identifying (and rectifying) unlikely collisions. 
 

2 The Discovery Node 
There will also be a discovery node in the system that maintains information about the list of peer nodes. 
Every time a peer node joins the system it notifies this discovery node and performs a registration, 
which includes the following information: 

• Its peerID 
• The IP address and port  information (please use TCP for communications) 

The discovery node checks that the peerID is equal to the hash code of <ip>:<port>. And that the IP 
is the actual IP address where the registration originated. 
 
The discovery node has been introduced here to simplify the process of discovering the first peer that 
will be the entry point into the system.  The discovery node is ONLY responsible for  

1. Returning ONE random node from the set of registered nodes 
2. Printing the list of peer nodes that are currently in the system 

If the discovery node is used for anything else there will be a 13 point deduction. An example of 
misusing the discovery node is to use it to give a new node information about all nodes in the system: 
such a misuse will defeat the purpose of this assignment. 
 
Points:  

1. Adding and removing entries from the discovery node when a peer either joins or leaves the 
system. (1 point) 

2. Returning a random live peer’s network information when a peer joins the overlay (1 point) 



CS 555: DISTRIBUTED SYSTEMS 
Department of Computer Science 
Colorado State University 

SPRING 2024 
URL: http://www.cs.colostate.edu/~csx55 
Professor: Shrideep Pallickara 

 

Page 2 of 6 

 

3 Finger Table: 
In the Chord system with a 32-bit ID space; each peer maintains a Finger Table (FT) with 32 entries. 
This FT is used to traverse the overlay efficiently. The ith entry in the FT of a peer corresponds to a 
successor peer that is 2i-1 hops away. The ith entry in the FT of a peer with id p is FTp[i] = succ(p + 2i-
1). In a case where all 232 peers are present; the FT allows you to reach peers that are 1, 2, 4, …, 231 
hops away. 
 
A data item with a computed hash code of k is stored at a peer with the smallest identifier that is >= k. 
This is the successor of k, and is represented as succ(k). The nodes are organized in a ring, so it is 
possible that a node’s successor has a value that is less-than the identifier of the peer in question.  
 
An example (from the book by Tanenbaum and van der Steen) depicting the finger table in a system 
with 25 nodes, and thus having 5 entries is depicted below.  
 
Since the system is in flux with the peers leaving and joining randomly, every time a node is added you 
can expect the finger tables at some of the nodes to change in response to this churn. 
 
 

!" #"
$"

%"

&"

'"

("

)"

*"

+"

#!"

##"

#$"
#%"

#&"
#'"#("#*"#)"

#+"

$!"

$#"

$$"

$%"

$&"

$'"

$("

$*"

$)"

$+"
%!"

%#"

#" &"
$" &"
%" +"
&" +"
'" #)"

#" +"
$" +"
%" +"
&" #&"
'" $!"

#" ##"
$" ##"
%" #&"
&" #)"
'" $)"

#" #&"
$" #&"
%" #)"
&" $!"
'" $)"

#" #)"
$" #)"
%" #)"
&" $)"
'" #"

#" $!"
$" $!"
%" $)"
&" $)"
'" &"

#" $#"
$" $)"
%" $)"
&" $)"
'" &"

#" $)"
$" $)"
%" $)"
&" #"
'" +"

#" #"
$" #"
%" #"
&" &"
'" #&" Resolve k=12 

from peer 28 

Resolve k=26 
from peer 1 



CS 555: DISTRIBUTED SYSTEMS 
Department of Computer Science 
Colorado State University 

SPRING 2024 
URL: http://www.cs.colostate.edu/~csx55 
Professor: Shrideep Pallickara 

 

Page 3 of 6 

 
 

4 Storing data items 
You must use the FT to store data items at the appropriate peer node. A data item with a key k will be 
stored at the peer with the smallest identifier, p, such that p >= k. The data items that will be given to 
you are files. The key is the hash code of the name of the file (including the extension and excluding 
the path). For example, the file /tmp/work/project.txt will have “project.txt”.hashCode() as key. When 
a peer wants to store a new file, it first computes the 32-bit hash code of the name and then it uses the 
FT to lookup the peer node where the file should be stored: the node that gets back to you will be the 
node that is most suitable to store your data. The file is then transferred to that suitable peer node, 
which stores the file on the machine that it is running on. Each node must store its files in the folder 
tmp/<peerID>/. Each node is responsible for creating its storage folder if it does not exists. For this 
assignment we will not test files larger than 1MB. 
 
Points: 
1. Identification of peer to store content (1 point). 
2. Using the FTs to take the correct route to reach the targeted peer (3 points). 
 

  
 
 
 
 

5 Addition of a node: 
Each node also keeps track of its predecessor. When a node finds a successor node, it informs this node 
that it is now its predecessor. To maintain correctness, at regular intervals (this should be configurable 
so that we can test this feature during the scoring process) each node q uses the first entry in its FT to 
contact succ(q+1) and requests it to return its predecessor. This should be q: if this is not the case, we 
know that a new node p has entered the system q < p <= succ(q+1) in which case q has to reset its 
successor to p. It will then check to see if p has recorded q as its predecessor; if not, another adjustment 
of FTq[1] will need to be made.  
 
The addition of a new node impacts the overlay network in two ways. First, this results in updates to 
the FT at one or more peers. Second, the addition of a new node should result in migration of data items 
from peers that were originally holding them. This is depicted in the figure above. 

!"
#"

$"

%"

&"

'"

("

)"
*"

+"

#!"

##"

#$"

#%"

#&"

#'"
Actual Node 

{2,3,4}

{5,6,7}

{8,9,10,11,12}

{13,14,15}

Associated data keys 

{0,1}

New node 10 
will be inserted 

!"
#"

$"

%"

&"

'"

("

)"
*"

+"

#!"

##"

#$"

#%"

#&"

#'"
Actual Node 

{2,3,4}

{5,6,7}

{11,12}

{13,14,15}

Associated data keys 

{0,1}

{8,9,10}!



CS 555: DISTRIBUTED SYSTEMS 
Department of Computer Science 
Colorado State University 

SPRING 2024 
URL: http://www.cs.colostate.edu/~csx55 
Professor: Shrideep Pallickara 

 

Page 4 of 6 

 
 
 
Points: 

1. Adding a new node at the right location in the overlay using the correct route (2 points) 
2. Creating the FT at the newly added node with the correct entries  (2 points) 
3. Updating the FT at the node that was impacted as a result of this addition. If p was the successor 

of a node k, and the newly added node q is now the predecessor of p; k would now be the 
predecessor of q, and q will be the successor of k. (2 points) 

4. Migrating data items from peers that are now not the most suitable peers to host the data (2 
points) 

 
 
 

6 Commands 
Both discovery and peer nodes should support an asynchronous command line interface.  
 

6.1 Discovery Node 
On the discovery node, the only command that should be implemented is: 
peer-nodes 

Prints the list of peer nodes currently connected. The peer nodes should be printed on separate 
lines sorted by peerID in ascending order. Each line should have the following format: <peerID> <ip-
address>:<port> 
 
 

6.2 Peer Nodes 
Peer nodes should support the following commands: 
neighbors 

Prints information about the neighboring peer nodes in the following format: 
predecessor: <peerID> <ip-address>:<port> 
successor: <peerID> <ip-address>:<port> 

 
files 

Prints the list of files this peer node is responsible for. Each file should appear on a separate line 
with the following format: 

<file-name> <hash-code> 
 
 
finger-table 

Prints the finger table of the peer node. Each row of the table should be on a separate line. Each 
line should have the format: <index> <peerID> 
 
 
upload <file-path> 

Stores the specified file into the chord system. The file is not directly stored on the peer node where 
the command is issued. Instead, the file is stored in the peer node with the smallest peerID that is 
greater than the hash code of the file name (with extension and without path). The peer node where 
the command is issued is responsible for reading the file and sending it to the correct peer node. Example 
usage: upload work/projects/readme.txt 



CS 555: DISTRIBUTED SYSTEMS 
Department of Computer Science 
Colorado State University 

SPRING 2024 
URL: http://www.cs.colostate.edu/~csx55 
Professor: Shrideep Pallickara 

 

Page 5 of 6 

 
 
 
download <file-name> 

Queries the chord system and downloads the file with the given name to the current working 
directory. <file-name> should contain the extension, but not the original path where it was uploaded 
from. If the file does not exist, an error message should be printed. If the file is downloaded, the peer 
node should print the list of hops that was used to retrieve the file. The list should contain the starting 
peer and the final peer, as well as all intermediate hops. Each peer node should be on a separate line 
and it should be represented just by its peerID. The peer nodes should be ordered from starting node 
to final node. Example usage: download readme.txt 
 
 
exit 

Gracefully leaves the system and shuts down. As part of this exit the following should occur: (1) the 
data stored at this node must be migrated to the appropriate peer node, (2) the FT of the remaining 
nodes should be updated, and (3) the discovery node is notified. 
 
 
 

7 Third-party libraries and restrictions: 
You are not allowed to use any third party library (there is 15 point deduction for this). Your 
build.gradle file should only contain plugins {id ‘java’} . You can discuss the project with your peers at 
the architectural level, but the project implementation is an individual effort.  
 
 
 
 

8 Testing Scenario 
Command to start the discovery node: 
java csx55.chord.Discovery portnum 
 
Command to start the peer node: 
java csx55.chord.Peer discovery-ip discovery-port 
 
We will test your code with 1 discovery node and between 1 and 10 peer nodes. We will add and 
remove peer nodes throughout the execution. Your implementation should handle the migration of 
files. We will store and retrieve multiple files. We will check the location where the files are stored, the 
path taken to retrieve the files, and the correctness of the content of the files. 
 
 
 

9 What to Submit  
Use CANVAS to submit a single .tar file that contains:  

• The src folder containing all the Java files related to the assignment (please document your 
code) 

• the build.gradle file you use to build your assignment 
• A README.txt file containing a description of each file and any information you feel the GTA 

needs to grade your program. 



CS 555: DISTRIBUTED SYSTEMS 
Department of Computer Science 
Colorado State University 

SPRING 2024 
URL: http://www.cs.colostate.edu/~csx55 
Professor: Shrideep Pallickara 

 

Page 6 of 6 

 
 
Filename Convention: All classes should reside in a package called csx55.chord. The archive file 
should be named as <FirstName>-<LastName>-HW<x>.tar. For example, if you are Cameron Doe then 
the tar file should be named Cameron-Doe-HW3.tar.  
 
 
 
 
 

10 Version Change History 
This section will reflect the change history for the assignment. It will list the version number, the date 
it was released, and the changes that were made to the preceding version. Changes to the first public 
release are made to clarify the assignment; the spirit or the crux of the assignment will not change. 

Version Date Change 
1.0 3/20/2024 First public release of the assignment 
1.1 3/20/2024 Added the exit command in section 6.2 

 
 
 


