
CS X55: DISTRIBUTED SYSTEMS
Department of Computer Science
Colorado State University

SPRING 2024
URL: http://www.cs.colostate.edu/~csx55
Professor: Shrideep Pallickara

Page 1 of 12

Homework 1: Programming Component

Using Dijkstra’s Shortest Paths to Route Packets in a Network Overlay
VERSION 1.1

DUE DATE: Wednesday February 14th, 2024 @ 8:00 pm

The objective of this assignment is to get you familiar with coding in a distributed setting where you
need to manage the underlying communications between nodes. Upon completion of this assignment
you will have a set of reusable classes that you will be able to draw upon. As part of this assignment
you will be: (1) constructing a logical overlay over a distributed set of nodes, and then (2) computing
shortest paths using Dijkstra’s algorithm to route packets in the system.

The overlay will contain at least 10 messaging nodes, and each messaging node will be connected to
CR (default of 4) other messaging nodes. Each link that connects two messaging nodes within the
overlay has a weight associated with it. Links are bidirectional i.e. if messaging node A established a
connection to messaging node B, then messaging node B must use that link to communicate with A.

Once the overlay has been setup, messaging nodes in the system will select a node at random and
send that node (also known as the sink node) a message. Rather than send this message directly to
the sink node, the source node will use the overlay for communications. This is done by computing
the shortest route (based on the weights assigned during overlay construction) between the source
node and the sink node. Depending on the overlay and link weights, there may be zero or more
intermediate messaging nodes that packets between a particular source and sink must pass through.
Such intermediate nodes are said to relay the packets. The assignment requires you to verify
correctness of packet exchanges between the source and sinks by ensuring that: (1) the number of
messages that you send and receive within the system match, and (2) these messages have not been
corrupted in transit to the intended recipient. Message exchanges and connection setups/terminations
happen continuously in the system.

All communications in this assignment are based on TCP. The assignment must be implemented in
Java and you cannot use any external jar files. You must develop all functionality yourself. This
assignment may be modified to clarify any questions (and the version number incremented), but the
crux of the assignment and the distribution of points will not change.

1 Components
There are two components that you will be building as part of this assignment: a registry and a
messaging node.

1.1 Registry:
There is exactly one registry in the system. The registry provides the following functions:

A. Allows messaging nodes to register themselves. This is performed when a messaging node
starts up for the first time.

B. Allows messaging nodes to deregister themselves. This is performed when a messaging node
leaves the overlay.

C. Enables the construction of the overlay by orchestrating connections that a messaging node
initiates with other messaging nodes in the system. Based on its knowledge of the messaging
nodes (through function A) the registry informs messaging nodes about the other messaging
nodes that they should connect to.

D. Assign and publish weights to the links connecting any two messaging nodes in the overlay.
The weights these links take will range from 1-10.

The registry maintains information about the registered messaging nodes in a registry; you can use
any data structure for managing this registry but make sure that your choice can support all the
operations that you will need.

CS X55: DISTRIBUTED SYSTEMS
Department of Computer Science
Colorado State University

SPRING 2024
URL: http://www.cs.colostate.edu/~csx55
Professor: Shrideep Pallickara

Page 2 of 12

The registry does not play any role in the routing of data within the overlay. Interactions between the
messaging nodes and the registry are via request-response messages. For each request that it
receives from the messaging nodes, the registry will send a response back to the messaging node
(based on the IP address associated with Socket’s input stream) where the request originated. The
contents of this response depend on the type of the request and the outcome of processing this
request.

1.2 The Messaging node
Unlike the registry, there are multiple messaging nodes (minimum of 10) in the system. A messaging
node provides two closely related functions: it initiates and accepts both communications and
messages within the system.

Communications that nodes have with each other are based on TCP. Each messaging node needs to
automatically configure the ports over which it listens for communications i.e. the port numbers
should not be hard-coded or specified at the command line. TCPServerSocket is used to accept
incoming TCP communications.

Once the initialization is complete, the node should send a registration request to the registry.

2 Interactions between the components
This section will describe the interactions between the registry and the messaging nodes. This section
includes the prescribed wire-formats. You have freedom to construct your wire-formats but you must
include the fields that have been specified. A good programming practice is to have a separate class
for each message type so that you can isolate faults better. The Message Types that have been
specified could be part of an interface, say csx55.overlay.wireformats.Protocol and have values
specified there. This way you are not hard-coding values in different portions of your code.

Use of Java serialization is not allowed. Your classes for the message types should not implement the
java.io.Serializable interface.

2.1 Registration:
Upon starting up, each messaging node should register its IP address, and port number with the
registry. It should be possible for your system to register messaging nodes that are running on the
same host but are listening to communications on different ports. There should be 3 fields in this
registration request:

Message Type (int): REGISTER_REQUEST
IP address (String)
Port number (int)

When a registry receives this request, it checks to see if the node had previously registered and
ensures the IP address in the message matches the address where the request originated. The
registry issues an error message under two circumstances:

• If the node had previously registered and has a valid entry in its registry.
• If there is a mismatch in the address that is specified in the registration request and the IP

address of the request (the socket’s input stream).

The contents of the response message are depicted below. The success or failure of the registration
request should be indicated in the status field of the response message.

Message Type (int): REGISTER_RESPONSE
Status Code (byte): SUCCESS or FAILURE
Additional Info (String):

CS X55: DISTRIBUTED SYSTEMS
Department of Computer Science
Colorado State University

SPRING 2024
URL: http://www.cs.colostate.edu/~csx55
Professor: Shrideep Pallickara

Page 3 of 12

In the case of successful registration, the registry should include a message that indicates the number
of entries currently present in its registry. A sample information string is “Registration request
successful. The number of messaging nodes currently constituting the overlay is (5)”. If
the registration was unsuccessful, the message from the registry should indicate why the request was
unsuccessful.

NOTE: In the rare case that a messaging node fails just after it sends a registration request, the
registry will not be able to communicate with it. In this case, the entry for the messaging node should
be removed from the messaging node-registry maintained at the registry.

2.2 Deregistration
When a messaging node exits it should deregister itself. It does so by sending a message to the
registry. This deregistration request includes the following fields

Message Type: DEREGISTER_REQUEST
Node IP address:
Node Port number:

The registry should check to see that request is a valid one by checking (1) where the message
originated and (2) whether this node was previously registered. Error messages should be returned in
case of a mismatch in the addresses or if the messaging node is not registered with the overlay. You
should be able to test the error-reporting functionality by de-registering the same messaging node
twice.

2.3 Peer messaging nodes list

Once the setup-overlay command (see section 3) is specified at the registry it must perform a series
of actions that lead to the creation of the overlay via messaging nodes initiating connections with each
other. Messaging nodes await instructions from the registry regarding the other messaging nodes that
they must establish connections to.

The registry must ensure two properties. First, it must ensure that the number of links to/from (the
links are bidirectional) every messaging node in the overlay is identical; this is configurable metric
(with a default value of 4) and is specified as part of the setup-overlay command. Second, the
registry must ensure that there is no partition within the overlay i.e. it should be possible to reach any
messaging node from any other messaging node in the overlay.

If the connection requirement for the overlay is CR, each messaging node will have CR links to other
messaging nodes in the overlay. The registry selects these CR messaging nodes that constitute the
peer-messaging nodes list for a messaging node randomly. However, a check should be performed to
ensure that the peer-messaging nodes list for a messaging node does not include the targeted
messaging node i.e. a messaging node should not have to connect to itself. The registry keeps track of
the connections that are being created; for example, if messaging node A is asked to connect to
messaging node B, the connection counts for both A and B are incremented. The registry must ensure
that connection counts are met and not breached.

The registry sends a different list of messaging nodes to each messaging node in the overlay. To avoid
duplicate connections being established between messaging nodes, only one messaging node in a link
should be instructed to create the connection. For instance, if there is a link between nodes A and B,
only node A should be instructed to establish a link with node B or vice versa. The number of peer
messaging nodes included in messages to different messaging nodes may vary from CR through 0. If a
messaging node’s connection limit was reached through previous messages sent to other messaging

CS X55: DISTRIBUTED SYSTEMS
Department of Computer Science
Colorado State University

SPRING 2024
URL: http://www.cs.colostate.edu/~csx55
Professor: Shrideep Pallickara

Page 4 of 12

nodes in the overlay, a message still needs to be sent to that messaging node. The peer-list message
will have the following format

Message Type: MESSAGING_NODES_LIST
Number of peer messaging nodes: X
Messaging node1 Info
Messaging node2 Info
…..
Messaging nodeX Info

If a messaging node does not need to establish any connections, set the number of peer messaging
nodes to 0. The information corresponding to a messaging node includes the following: messaging
node_hostname:portnum. Upon receiving the MESSAGING_NODES_LIST message a messaging node
should initiate connections to the specified messaging nodes. After establishing connections, a
messaging node should print the message “All connections are established. Number of connections: x”
to the console to help with testing and evaluating your implementation.

2.4 Assign overlay link weights
The registry is also responsible for assigning weights to connections in the overlay. The weight for
each link is an integer between 1-10 and is randomly computed by the registry. This information will
be encoded in the message as follows.

Message Type: Link_Weights
Number of links: L
Linkinfo1
Linkinfo2
...
LinkinfoL

A Linkinfo connecting messaging nodes A and B contains the following fields: hostnameA:portnumA
hostnameB:portnumB weight

A single message should be constructed with all link weights and sent to all registered messaging
nodes. A messaging node should process this message and store its information to generate routing
paths for messages as explained in the following section. Further, it should acknowledge the receipt
and processing of this message by printing the message “Link weights received and processed. Ready
to send messages.” to the console.

2.5 Initiate sending messages
The registry informs nodes in the overlay when they should start sending messages to each other. It
does so via the TASK_INITIATE control message.

Message Type: TASK_INITIATE
 Rounds: X

2.6 Send message
Data can be fed into the network from any messaging node within the network. Packets are sent from
a source to a sink; it is possible that there might be zero or more intermediate nodes in the system
that relay messages en route to the sink. Every node tracks the number of messages that it has
relayed during communications within the overlay.

When a packet is ready to be sent from a source node to the sink node, the source node computes the
shortest path to the sink node using Dijkstra’s shortest path algorithm. This path is then used as a
routing plan that will be included in the packet. The routing plan indicates how the packet must be
routed; for example, A may have a direct connection to B, but depending on the link weights, the
routing plan may call for the packet to sent as A à C à E à D à B. Since the link weights are fixed

CS X55: DISTRIBUTED SYSTEMS
Department of Computer Science
Colorado State University

SPRING 2024
URL: http://www.cs.colostate.edu/~csx55
Professor: Shrideep Pallickara

Page 5 of 12

once assigned, you may cache the routing plans once computed as an optimization. Also a message
includes a payload which is a random integer as explained in section 4.

A key requirements for the dissemination of packets within the overlay is that no messaging node
should receive the same packet more than once. This should be achieved without having to rely on
duplicate detection and suppression.

2.7 Inform registry of task completion
Once a node has completed its task of sending a certain number of messages in rounds (described in
section 4), it informs the registry of its task completion using the TASK_COMPLETE message. This
message will have the following format:

Message Type: TASK_COMPLETE
Node IP address:
Node Port number:

2.8 Retrieve traffic summaries from nodes
Once the registry has received TASK_COMPLETE messages from all the registered nodes it will issue a
PULL_TRAFFIC_SUMMARY message. This message is sent to all the registered nodes in the system. This
message will have the following format. To allow all messages that are already in transit to reach their
destination nodes, you should wait for some time (e.g., 15 seconds) after receiving all TASK_COMPLETE
messages before issuing a PULL_TRAFFIC_SUMMARY message.

Message Type: PULL_TRAFFIC_SUMMARY

2.9 Sending traffic summaries from the nodes to the registry
Upon receipt of the PULL_TRAFFIC_SUMMARY message from the registry, the node will create a
response that includes summaries of the traffic that it has participated in. The summary will include
information about messages that were sent and received. This message will have the following format.

Message Type: TRAFFIC_SUMMARY
Node IP address:
Node Port number:
Number of messages sent
Summation of sent messages
Number of messages received
Summation of received messages
Number of messages relayed

Once the TRAFFIC_SUMMARY message is sent to the registry, the node must reset the counters
associated with traffic relating to the messages it has sent and received so far e.g number of
messages sent, summation of sent messages, etc.

CS X55: DISTRIBUTED SYSTEMS
Department of Computer Science
Colorado State University

SPRING 2024
URL: http://www.cs.colostate.edu/~csx55
Professor: Shrideep Pallickara

Page 6 of 12

3 Specifying commands and interacting with the processes
Both the registry and the messaging node should run as foreground processes and allow support for
commands to be specified while the processes are running. The commands that should be supported
are specific to the two components.

3.1 Registry

list-messaging-nodes
 This should result in information about the messaging nodes (hostname, and port-number) being
listed. Information for each messaging node should be listed on a separate line.

list-weights
 This should list information about links comprising the overlay. Each link’s information should be on
a separate line and include information about the nodes that it connects to and the weight of that link.
For example, carrot.cs.colostate.edu:2000 broccoli.cs.colostate.edu:5001 8, indicates that
the link is between two messaging nodes (carrot.cs.colostate.edu:2000) and
(broccoli.cs.colostate.edu:5001) with a link weight of 8.

setup-overlay number-of-connections
 This should result in the registry setting up the overlay. It does so by sending messaging nodes
messages containing information about the messaging nodes that it should connect to. The registry
tracks the connection counts for each messaging node and will send the MESSAGING_NODES_LIST
message (see Section 2.3) to every messaging node. A sample specification of this command is
setup-overlay 4 that will result in the creation of an overlay where each messaging node is
connected to exactly 4 other messaging nodes in the overlay. You should handle the error condition
where the number of messaging nodes is less than the connection limit that is specified.

NOTE: You are not required to deal with the case where a messaging node is added or removed after
the overlay has been set up. You must however deal with the case where a messaging node registers
and deregisters from the registry before the overlay is set up.

send-overlay-link-weights
This should result in a Link_Weights message being sent to all registered nodes in the overlay. This
command is issued once after the setup-overlay command has been issued. This also allows all
nodes in the system to be aware of not just all the nodes in the system, but also the complete set of
links in the system.

The following figure depicts an example overlay with 8 messaging nodes with the connection
requirement (CR) set to 4. For instance, node A is connected with nodes B, C, G and H using
bidirectional links with weights of 1, 4, 7 and 6 respectively.

CS X55: DISTRIBUTED SYSTEMS
Department of Computer Science
Colorado State University

SPRING 2024
URL: http://www.cs.colostate.edu/~csx55
Professor: Shrideep Pallickara

Page 7 of 12

Figure 1: Graphical depiction of an overlay and link weights.

start number-of-rounds
The start command results in nodes exchanging messages within the overlay. Each node in the
overlay will be responding for sending number-of-rounds messages. An advantage of this is that you
are able to debug your system with a smaller set of messages and verify correctness of your programs
across a wide range of values. A detailed description is provided in section 4 below.

3.2 Messaging node

print-shortest-path
 This should print the shortest paths that have been computed to all other the messaging nodes
within the system. The listing should also indicate weights associated with the links.
e.g. carrot–-8––broccoli––4––-zucchini––-2––brussels––1––onion

exit-overlay
 This allows a messaging node to exit the overlay. The messaging node should first send a
deregistration message (see Section 2.2) to the registry and await a response before exiting and
terminating the process.

CS X55: DISTRIBUTED SYSTEMS
Department of Computer Science
Colorado State University

SPRING 2024
URL: http://www.cs.colostate.edu/~csx55
Professor: Shrideep Pallickara

Page 8 of 12

4 Setting
For the remainder of the discussion, we assume that the setup-overlay command has been specified
followed by the send-overlay-link-weights command at the register. Also, nodes will not be added
to the system from hereon.

When the start command is specified at the registry, the registry sends the TASK_INITIATE control
message to all the registered nodes within the overlay. Upon receiving this information from the
registry, a given node will start exchanging messages with other nodes.

Each node participates in a set of rounds. Each round involves a node sending messages to a
randomly chosen node (excluding itself, of course) from the set of registered nodes based on the
Link_Weights message. All communications in the system will be based on TCP. To send a message
the source node computes a routing plan (encoding the shortest path) with zero or more intermediate
nodes relaying the message en route to the destination sink node. The payload of each message is a
random integer with values that range from 2147483647 to -2147483648. At the end of each round,
the process is repeated by choosing another node at random. The number of rounds initiated by each
node is determined by the specified number-of-rounds.

The number of nodes will be fixed at the start of the experiment. We will likely use around 10 nodes
for the test environment during grading. When setting up the overlay, a messaging node only opens
one connection at a time to another node, it may receive multiple incoming connections as other
nodes try to connect to it.

4.1 Tracking communications between nodes
Each node will maintain two integer variables that are initialized to zero: sendTracker and
receiveTracker. The sendTracker represents the number of messages that were sent by that node
and the receiveTracker maintains information about the number of messages that were received.
Additionally, each node will track the number of messages that it relayed – i.e., messages for which it
was neither the source nor the sink. Consider the case where there are 10 nodes in the system as
depicted in Figure 1. Since every node initiates 5000 rounds, each of which contains 5 messages, the
number of messages sent by every node is 25,000. With 10 nodes in the system, the total number of
messages would be 250,000. Since a sending node chooses the target node for each round at random,
the number of messages received by different receivers would be different. However, because each
round has 5 messages, the total number of messages received at a receiver would a multiple of 5 and
close to 25,000 (i.e. it could 24000, 24595, 26905, …).

The number of messages that a node relays will depend on the overlay topology, link weights, and
shortest paths that it belongs to. This is tracked using the variable relayTracker.

To track the messages that it has sent and received, each node will maintain two additional long
variables that are initialized to zero: sendSummation and receiveSummation. The data type for these
variables is a long to cope with overflow issues that will arise as part of the summing operations that
will be performed. The variable sendSummation, continuously sums the values of the random numbers
that are sent, while the receiveSummation sums values of the payloads that are received. The values
of sendSummation and receiveSummation at a node can be positive or negative.

CS X55: DISTRIBUTED SYSTEMS
Department of Computer Science
Colorado State University

SPRING 2024
URL: http://www.cs.colostate.edu/~csx55
Professor: Shrideep Pallickara

Page 9 of 12

Figure 2: Depiction of a possible distribution of the number of messages sent and received within a

set of 10 nodes.

4.2 Correctness Verification
We will verify correctness by: (1) checking the number of messages that were sent and received,
and (2) if these packets were corrupted for some reason.

The total number of messages that were sent and received by the set of all nodes must match i.e. the
cumulative sum of the receiveTracker at each node must match the cumulative sum of the
sendTracker variable at each node. We will check that these packets were not corrupted by verifying
that when we add up the values of sendSummation it will exactly match the added up values of
receiveSummation.

4.3 Collecting and printing outputs
When a node has completed its rounds, it will send a TASK_COMPLETE message to the registry. When
the registry receives a TASK_COMPLETE message from each of the N registered nodes in the system,
it issues a PULL_TRAFFIC_SUMMARY message to all the nodes.

Upon receipt of the PULL_TRAFFIC_SUMMARY message, a node will prepare to send information about
the messages that it has sent and received. This includes: (1) the number of messages that were
sent by that node, (2) the summation of the sent messages, (3) the number of messages that were
received by that node, and (4) the summation of the received messages. The node packages this
information in the TRAFFIC_SUMMARY message and sends it to the registry. After a node generates
the TRAFFIC_SUMMARY, it should reset the counters that it maintains. This will allow testing of the
software for multiple runs.

Upon receipt of the TRAFFIC_SUMMARY from all the registered nodes, the registry will proceed to print
out the table as depicted below. Each row must be printed on a separate line.

1"
2"

3"

4"

5"

6"

8"

7"

9"

10"

receiveTracker=24005..
sendTracker.=.25000..

receiveTracker=25100..
sendTracker.=.25000..

receiveTracker=26000..
sendTracker.=.25000..

receiveTracker=22995..
sendTracker....=.25000.

receiveTracker=25095..
sendTracker.=.25000..

receiveTracker=25000..
sendTracker.=.25000..

receiveTracker=27000..
sendTracker.=.25000..

receiveTracker=27005..
sendTracker.=.25000..

receiveTracker=22000..
sendTracker.=.25000..

receiveTracker=27000..
sendTracker.=.25000..

CS X55: DISTRIBUTED SYSTEMS
Department of Computer Science
Colorado State University

SPRING 2024
URL: http://www.cs.colostate.edu/~csx55
Professor: Shrideep Pallickara

Page 10 of 12

Example output at the registry:
The collated outputs from 10 nodes are depicted below. Note how the number of received messages
may be slightly different than the number of sent messages. The summation of sent or received
messages at a node may be negative. In this particular example the final summation across all nodes
is positive, it may well be negative in your case and that is fine!

Number
of

messages
sent

Number of
messages
received

Summation of sent
messages

Summation of received
messages

Number of
messages
relayed

Node 1 25000 25440 -340,040,800,604.00 -144,703,367,090.00
40445

Node 2 25000 25395 277,777,554,744.00 192,844,494,434.00
55435

Node 3 25000 24535 -42,851,633,614.00 199,699,309,204.00
60770

Node 4 25000 25130 184,871,797,810.00 91,406,191,639.00
30535

Node 5 25000 24245 -106,636,042,422.00 -180,588,270,287.00
10140

Node 6 25000 25120 24,251,523,172.00 398,033,468,762.00
78545

Node 7 25000 25205 145,053,292,085.00 -377,484,205,221.00
45675

Node 8 25000 24280 -235,398,166,411.00 51,922,993,583.00
8765

Node 9 25000 24985 -70,572,398,997.00 -100,564,359,421.00
15655

Node 10 25000 25665 328,837,533,087.00 34,726,403,247.00 16560

Sum

250000 250000 165,292,658,850.00 165,292,658,850.00

5 Command line arguments for the two components
Your classes should be organized in a package called csx55.overlay. The command-line arguments
and the order in which they should be specified for the Messaging node and the Registry are listed
below

java csx55.overlay.node.Registry portnum

java csx55.overlay.node.MessagingNode registry-host registry-port

CS X55: DISTRIBUTED SYSTEMS
Department of Computer Science
Colorado State University

SPRING 2024
URL: http://www.cs.colostate.edu/~csx55
Professor: Shrideep Pallickara

Page 11 of 12

6 Grading
Homework 1 accounts for 15 points towards your final course grade.

Registry Breakdown: 8 points
1 point: The registry is functional with support for registration and de-registration of nodes.
3 points: Setting up of the overlay while ensuring that there are no partitions and satisfying the

connection limit requirement
Successful initiation of the message exchange process at all nodes. A node will not start
sending messages until it receives the list of messaging nodes from the repository.

1 point: Propagating the link weights
2 points Traffic summaries are collated and printed out as depicted in the example table. This

feature will assist in testing the program as well as during grading.
1 points Responding to commands specified while interacting with the process

Messaging node Breakdown: 7 points

1 point Establishing connections based on the MESSAGING_NODES_LIST
3 points Routing data packets successfully within the overlay without duplication and complete

reachability.
1 points The mechanism for task completion and retrieval of traffic summaries works correctly
2 points Message totals for send and receive match.

7 Deductions
There will be a 15-point deduction if any of the restrictions below are violated.

1. The data that you will be sending will be byte[]. None of your classes can implement the
java.io.Serializable interface.

2. No GUIs should be built under any circumstances. These are auxiliary paths and the deduction
is in place to ensure that none of you attempt to do this.

8 Milestones:
You have 4 weeks to complete this assignment. The weekly milestones below correspond to what you
should be able to complete at the end of every week.

Milestone 1: You should be able to have two nodes talking to each other i.e. you are able to exchange
messages between two servers.

Milestone 2: You should be able to have 10 messaging node instances talk to the registry, and have
the registry sending commands to orchestrate the setting up of the overlay and link weights. You
should also be able to issue all commands at the foreground processes.

Milestone 3: You should be able to compute the shortest at each messaging node, generate and
enforce routing plans to route messages fed into the overlay. You should be able to track the
summation counts for the messages and the contents of these messages.

Milestone 4: Iron out any wrinkles that may preclude you from getting the correct (i.e. not corrupted)
outputs at all times.

CS X55: DISTRIBUTED SYSTEMS
Department of Computer Science
Colorado State University

SPRING 2024
URL: http://www.cs.colostate.edu/~csx55
Professor: Shrideep Pallickara

Page 12 of 12

9 What to Submit

Use CANVAS to submit a single .tar file that contains:
•	all the Java files related to the assignment (please document your code)
•	the build.gradle file you use to build your assignment
•	a README.txt file containing a manifest of your files and any information you feel the TAs needs to
grade your program.

Software versioning: Java 11 and gradle version 8.3

This environment is provided on CS lab machines using module load in Bash:
module load courses/cs455
module load courses/cs555

Filename Convention: The class names for your messaging node and registry should be as specified
in Section 5. You may call your support classes anything you like. All classes should reside in a
package called csx55.overlay. The archive file should be named as
<FirstName>_<LastName>_HW1.tar. For example, if you are Cameron Doe then the tar file should be
named Cameron-Doe-HW1.tar.

10 Version Change History
This section will reflect the change history for the assignment. It will list the version number, the date
it was released, and the changes that were made to the preceding version. Changes to the first public
release are made to clarify the assignment; the spirit or the crux of the assignment will not change.

Version Date Comments
1.0 1/17/2024 First public release of the assignment.
1.1 1/22/2024 Added information about setting up the environment using modules

(See section 9) and updated CR lower-bound to 0 on page-3 in the
peer messaging nodes list (section 2.3).

