CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

CSX55: DISTRIBUTED SYSTEMS
[DISTRIBUTED SERVERS]

Shrideep Pallickara
Computer Science
Colorado State University

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY
1
Topics covered in this lecture

Threads in Distributed Servers

Server design issues

State in Servers

Distributed Servers

TCP Handoffs

Route optimizations using MIPv6
COLORADO STATE UNIVERSITY (oresor S o emrvent DISTRIBUTED SERVERS L10.2
2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.1

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADS IN DISTRIBUTED SYSTEMS

3

Threads in distributed systems:

Multithreaded clients
(o

1 Hide communication latencies
Initiate communications
Interleave

Immediately do something else

1 Web browsers

As soon as main HTML page is fetched Identical

m Display it Code

Activate threads to retrieve other data types

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DISTRIBUTED SERVERS L10.4

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.2

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Several connections can be opened simultaneously

To the same server

If the server is overloaded; things get even slower

To replicated servers
Data transfer in parallel

Much faster rendering of content

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DISTRIBUTED SERVERS L10.5

5

Multithreaded Servers

Simplifies server code
Easier to develop servers that exploit parallelism

E.g.: Handling concurrent connections
Each connection managed by a different thread

Multiple connections handled by a pool of threads

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DISTRIBUTED SERVERS L10.6

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.3

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

AN EXAMPLE OF PERFORMANCE
IMPROVEMENTS WITH THREADS

Client and Server with Threads

[—
DISK /O

Request

Requests

Server

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompyteR SCIENCE DEPARTMENT DISTRIBUTED SERVERS

L10.8

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L10.4

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Server side processing

Server has queue of requests received from clients

Server also has a pool of one or more threads

Each thread repeatedly removes requests & processes it

Each thread applies the same methods to process the requests

Each request takes 2 ms of processing PLUs 8 ms of |/O (when server reads
from disk i.e. no caching)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DISTRIBUTED SERVERS L10.9

9

Maximum server throughput with 1 thread

The turnaround time for handling any request is 2+8 = 10 ms
The server can handle 100 requests per second

Any new requests that arrive while the thread is handling a request?

These will be queued

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DISTRIBUTED SERVERS L10.10

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L10.5

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Server throughput with 2 threads

We assume that the threads are independently schedulable
One thread can be scheduled while the other is blocked for 1/O

Thread T2 can process a second request when thread T1 is blocked, and vice
versa

This increases throughput ... but both threads may be blocked for |/O on the
single disk drive

If all 1/O requests are serialized and take 8 ms each?

Maximum throughput is 1000/8 = 125 requests/second

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DISTRIBUTED SERVERS L10.11

11

Server throughput with disk block caching

Server keeps data that it reads in buffers

When a server thread tries to retrieve data

It first examines the cache and avoids disk accesses if it finds data element
there

If the hit rate is 75%°2

The mean 1/O time per-request reduces to
(0.75x 0+ 0.25 x 8) = 2 milliseconds

Maximum theoretical throughput?

Becomes 500 requests per second

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DISTRIBUTED SERVERS L10.12

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.6

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

But there are costs associated with caching

Average processor time for a request increases
This is because it takes time to search for cached data for every operation

Let us assume that this is now 2.5 milliseconds

The server can now handle 1000/2.5 requests per second i.e. 400

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DISTRIBUTED SERVERS L10.13

13

Let’s look at caching plus multiple threads

Each request takes about 2.5 (processing) + 2 (I/O)
Total time per request is now 4.5 mSecs when disk accesses are serialized
Each thread can do 1000/4.5 requests per second i.e. 222 requests/second
With two threads?
444 requests/second
With three threads?
500 requests (bound by the | /O time)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DISTRIBUTED SERVERS L10.14

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.7

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADING ARCHITECTURES FOR
SERVERS

15
Worker pool architecture
(B
11 Server creates a fixed pool of worker threads to process requests
Pool is initialized when server starts up
01 Incoming requests are placed into a queue
Workers retrieve requests (work units) from the queue and process them
COLORADO STATE UNIVERSITY (oresor S o emrvent DISTRIBUTED SERVERS L10.16
16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.8

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Managing priorities in the worker pool?

Introduce multiple queues

Worker threads scan queues in the order of descending priority

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DISTRIBUTED SERVERS L1017

17

Disadvantages of the worker pool model

Number of worker threads is fixed

So, threads in the pool may be too few to adequately cope with the rate of
requests

Need to account for coordinated accesses to the shared queuve

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DISTRIBUTED SERVERS L10.18

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L10.9

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Thread-per-request architecture

Worker thread is spawned for each incoming request

Worker thread destroys itself after processing request

Advantages:
Threads do not contend for the shared work-queue

Throughput is potentially maximized

Disadvantage

Overhead for thread creation and destruction operations

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY Gopyter SciENCE DepARTMENT — DISTRIBUTED SERVERS L10.19
19
L] [
Thread-per-connection architecture
Associates a thread per connection
New worker thread created when a client makes a connection
Destroyed when client closes the connection
Client may make many requests over the connection
COLORADO STATE UNIVERSITY (oresor S o emrvent DISTRIBUTED SERVERS L10.20

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L10.10

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Thread-per-object architecture

Associate a thread with each remote object

A separate thread receives requests and queues them

But there is a queue per-object

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DISTRIBUTED SERVERS L10.21

21

Thread-per-connection & Thread-per-object

Advantages

Server benefits from lower thread management overheads compared to
thread-per-request

Disadvantages

Clients may be delayed when a worker thread has several outstanding
requests, but another thread has no work to perform

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DISTRIBUTED SERVERS L10.22

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L10.11

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SERVER DESIGN ISSUES

23

Server Design Issues
s

01 lterative Servers

o Handles request

1 Returns response to requesting client

1 Concurrent Servers

01 Pass request to a separate thread /process

® Multithreaded server

o Await new incoming request

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompyteR SCIENCE DEPARTMENT DISTRIBUTED SERVERS L10.24

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.12

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

The endpoint issue

Clients send their requests to an endpoint

Port to which a server listens to

But how do clients know about a port?

Globally assign endpoints for well-known ports
Internet Assigned Numbers Authority (IANA)
FTP {TCP, 21}, HTTP {TCP, 80}

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DISTRIBUTED SERVERS

L10.25

25

Implementing each service with a separate server

could waste resources

Instead of having multiple servers awaiting client requests

Have a single super-server

INETD daemon on Unix

Listens to several ports for Internet services
Pop3 {110}, FTP {21}, Telnet {23}
When request comes in:

(@ Fork process to handle it

(2) Process exits once done

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DISTRIBUTED SERVERS

L10.26

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L10.13

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Designing Servers:

0 Terminate client session

1 Send out-of-band data

1 But how can we send this out-of-band data?
(1) Send to a different port

(2) Reuse same connection

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT

o1 Server will eventually detect connection loss (TCP)

o1 Data to be processed before any other client data

u TCP urgent data e.g., socket.sendUrgentData (int data)

DISTRIBUTED SERVERS

Support interruption
-b

L10.27

27

STATE

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L10.14

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Tracking State in Servers

Stateless servers

Stateful servers

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DISTRIBUTED SERVERS

L10.29

29

Stateless servers

No state information about clients
E.g., Web Servers

Usually, some state is maintained

Log of documents accessed by client

Soft state: track state for a limited time

When timer elapses, revert to default behavior

But if this is lost, there should be no disruption of service

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DISTRIBUTED SERVERS

L10.30

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L10.15

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Stateful servers

Maintain persistent information on clients

Use this to improve performance

Real and perceived

Special measures needed to recover from failures

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY Gopyter SciENCE DepARTMENT — DISTRIBUTED SERVERS L10.31
31
Stateful servers: A file server example
Allows client to maintain local copy of file
Even for updates to the file
Maintain {client file} tuples to track file state
Identify who has most recent version of file
If server crashes it must recover the {client file} entries
COLORADO STATE UNIVERSITY (oresor S o emrvent DISTRIBUTED SERVERS L10.32

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L10.16

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

the server
s

11 Cookies serve this purpose for Web pages

01 Tells a site about the pages accessed by a user
Use this to decide how to manage client

Sent back to browser every time state info changes

1 Cookies don’t stay where they are baked!

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DISTRIBUTED SERVERS

A hybrid approach: Have the client send its state to

33

DISTRIBUTED SERVERS

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L10.17

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Mean time for failures and the premise for
distributed servers

Group several machines together

Don't rely on the availability of any single machine

Together, achieve better stability than each component individually

The sum is greater than the parts

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DISTRIBUTED SERVERS L10.35

35

Server Clusters
Application/compute Distributed
Servers file/database

Logical

switch /> PR SN
Client
Requests
_9 > PR SN

\ |
COLORADO STATE UNIVERSITY (oresor S o wmrvent DISTRIBUTED SERVERS L10.36

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.18

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Server Clusters

Switch is also responsible for load balancing requests

Simplest way to do this is using round-robin

If there are different services offered within the cluster?

Switch needs to dispatch requests appropriately

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DISTRIBUTED SERVERS L10.37

37

But what about transparency?

An important consideration is that the server cluster is transparent

Clients typically set up network connections over which requests are
sent

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DISTRIBUTED SERVERS L10.38

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.19

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

arbitrary node

1 When server responds to client

1 Requires OS-level modifications

1 Also used in content-aware request distribution

Inserts switch’s IP address in source field of the IP packet

But TCP expects an answer from the switch not some

39
L] o
The principle of TCP handoffs

B

Logically a

single TCP conn

.@.
Server
L10.40

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DISTRIBUTED SERVERS

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L10.20

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

When a cluster offers a single point ...

When there is a failure at that access point?

The entire cluster becomes unavailable

Several access points are typically provided
DNS can return several addresses all mapped to the same host name
Client makes several attempts if there are failures

Still requires static access points

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DISTRIBUTED SERVERS L10.41

41

Pulls and trade-offs

Stability

Long lived access point

Flexibility

Ability to configure a server cluster including the switch

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DISTRIBUTED SERVERS L10.42

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.21

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

What would be really nice
[

1 Distributed server with a dynamically changing set of machines

1 And also varying access points
COLORADO STATE UNIVERSITY Goresor SO e wvent DISTRIBUTED SERVERS L10.43
43

Mobility support in IP version 6 (MIPvé)
[

o1 A mobile node has a home-network

01 This node has a home-address

1 The node has a home agent

Takes care of traffic to the mobile node while it is away

COLORADO STATE UNIVERSITY (oresor S o emrvent DISTRIBUTED SERVERS L10.44
44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.22

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Mobility support in IP version 6 (MIPvé)
[
7 When a mobile node attaches to a foreign network
Gets a temporary care-of address
1 Care-of address reported to the home-agent
Forward all traffic to the mobile node
45
Apps communicating with mobile node only see the home
address and not the care-of-address
[
11 Offers a stable address for a distributed server
A single, unique contact address is initially assigned
01 Contact address is server’s lifetime address
COLORADO STATE UNIVERSITY (oresor S o emrvent DISTRIBUTED SERVERS L10.46
46

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L10.23

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Any node can act operate as the access point

Record own address as the care-of address
All traffic will be directed to the access point

If there’s a failure at the access point?

Another node takes over

Potential bottlenecks?
Home agent and access point

All traffic must flow through them

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DISTRIBUTED SERVERS L1047

47

The route optimization feature in MIPvé

When a mobile node reports its care-of address (CA) to the home-
agent (HA)
The HA reports the CA to a client

Client keeps {HA, CA}

Communications will be with the CA
Applications can still use the HA
MIPvé protocol stack will translate HA to CA

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DISTRIBUTED SERVERS L10.48

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.24

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Depicting Route Optimizations

Believes server has CuiEnT 1 Knows that Client 1 DISTRIBUTED SERVER X

address HA believes it is X)

Access point with
address CAl Server 1

H
Y

Believes it is
connected to X

Believes location
of X is CAl

~—_ o

CLIENT 2 Internet

Believes server has
address HA

- Server 2

Believes it is
connected to X

'Access point
with address cA2__

Believes location
v Knows that Client 2
of X is CA2 “ believes it is X

Professor: o =S KARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT DISTRIBUTED SERVERS L10.49

49

The contents of this slide-set are based on the
following references

Distributed Systems: Principles and Paradigms. Andrew S. Tanenbaum and Maarten Van
der Steen. 2nd Edition. Prentice Hall. ISBN: 0132392275/978-0132392273.
[Chapter 6, 2]

Distributed Systems: Concepts and Design. George Coulouris, Jean Dollimore, Tim
Kindberg, Gordon Blair. 5th Edition. Addison Wesley. ISBN: 978-0132143011.
[Chapter 7, 14]

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY compuTER SCIENCE DEPARTMENT DISTRIBUTED SERVERS L10.50

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.25

