
SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.1

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CS X55: DISTRIBUTED SYSTEMS [THREADS]

Shrideep Pallickara
Computer Science

Colorado State University

Threads: Reap What You Sow
Care to use more than a core?
 Let threads come to the fore

Maximize your utilizations they will
 Spurn them at your throughputs’ peril

1

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.2

Frequently asked questions from the previous class
survey

¨ Factory and singletons?

¨ Why cache the routes?
¨ ServerSockets

¤ What’s this wildcard?

¨ Term Project

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.2

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.3

Topics covered in this lecture

¨ Threads
¤ Rationale
¤ Contrasting threads with processes
¤ Thread Creation

3

COMPUTER SCIENCE DEPARTMENT

THREADS

Many hands make light work. John Heywood (1546)

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.3

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.5

Why should you care about threads?

¨ CPU clock rates have tapered off
¤ Days when you could count on “free” speed-up are long gone

¨ Manufacturers have transitioned to multicore processors
¤ Each with multiple hardware execution pipelines

¨ A single threaded process can utilize only one of these execution
pipelines
¤ Reduced throughput

¨ But more importantly, threads are awesome!

5

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.6

What we will look at

¨ Threads and its relation to processes
¨ Thread lifecycle
¨ Contrasting approaches to writing threads
¨ Data synchronization and visibility

¤ Avoiding race conditions
¨ Thread safety
¨ Sharing objects and confinement
¨ Locking strategies
¨ Writing thread-safe classes

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.4

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.7

What are threads?

¨ Miniprocesses or lightweight processes

¨ Why would anyone want to have a kind of process within a process?

7

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.8

The main reason for using threads

¨ In many applications multiple activities are going on at once
¤ Some of these may block from time to time

¨ Decompose application into multiple sequential threads
¤ Running concurrently

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.5

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.9

Isn’t this precisely the argument for processes?

¨ Yes, but there is a new dimension …

¨ Threads have the ability to share the address space (and all of its
data) among themselves

¨ For several applications
¤ Processes (with their separate address spaces) don’t work

9

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.10

Threads execute their own piece of code
independently of other threads, but …

¨ No attempt is made to achieve high-degree of concurrency
transparency
¤ Especially, not at the cost of performance

¨ Only maintains information to allow a CPU to be shared among
several threads

¨ Thread context
¤ CPU Context + Thread Management info

n List of blocked threads

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.6

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.11

Information not strictly necessary to manage multiple
threads is ignored

¨ Protecting data against inappropriate accesses by multiple threads in
a process?
¤ Developers must deal with this

11

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.12

Contrasting items unique & shared across threads

Per process items
{Shared by threads with a process}

Per thread items
{Items unique to a thread}

Address space
Global variables
Open files
Child Processes
Pending alarms
Signals and signal handlers
Accounting Information

Program Counter
Registers
Stack
State

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.7

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.13

A process with multiple threads of control can
perform more than 1 task at a time

CODE DATA FILES CODE DATA FILES

Registers Stack Registers

Stack

Registers

Stack

Registers

Stack

Traditional Heavy weight process Process with multiple threads

13

THREADS VS. MULTIPLE PROCESSES

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.8

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.15

Why prefer multiple threads over multiple
processes?

¨ Threads are cheaper to create and manage than processes

¨ Resource sharing can be achieved more efficiently between threads
than processes
¤ Threads within a process share the address space of the process

¨ Switching between threads is cheaper than for processes

¨ BUT … threads within a process are not protected from one another

15

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.16

Other costs for processes

¨ When a new process is created to perform a task there are other costs
¤ In a kernel supporting virtual memory the new process will incur page faults

n Due to data and instructions being referenced for the first time

¨ Hardware caches must acquire new cache entries for that particular
process

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.9

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.17

Contrasting the costs for threads [1/2]

¨ With threads these overheads may also occur, but they are likely to be
smaller

¨ When thread accesses code & data that was accessed recently by other
threads in the process?
¤ Automatically take advantage of any hardware or main memory caching

17

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.18

Contrasting the costs for threads [2/2]

¨ Switching between threads is much faster than that between
processes

¨ This is a cost that is incurred many times throughout the lifecycle of the
thread or process

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.10

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.19

Implications?

¨ Performance of a multithreaded application is seldom worse than a
single threaded one
¤ Actually, leads to performance gains

¨ Development requires additional effort
¤ No automatic protection against each other

19

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.20

Another drawback of processes is the overheads for
IPC (Inter Process Communications)

Process A Process B

Operating System

Switch from kernel
space to user space

Switch context from
process A to B

Switch from
user space to
kernel space

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.11

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.21

A process in memory

stack

heap

data

text
{Global variables}

{Function parameters,
 return addresses,
 and local variables}

max

low

21

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.22

Why each thread needs its own stack [1/2]

¨ Stack contains one frame for each procedure called but not returned
from

¨ Frame contains
¤ Local variables
¤ Procedure’s return address

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.12

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.23

Why each thread needs its own stack [2/2]

¨ Procedure X calls procedure Y, Y then calls Z
¤ When Z is executing?

nFrames for X, Y and Z will be on the stack

¨ Each thread calls different procedures
¤ So has a different execution history

23

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.24

Each thread has its own stack

Kernel

Stack for
thread

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.13

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.25

Almost impossible to write programs in Java without
threads

¨ We use multiple threads without even realizing it

25

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.26

Blocking I/O: Reading data from a socket

¨ Program blocks until data is available to satisfy the read() method

¨ Problems:
¤ Data may not be available
¤ Data may be delayed (in transit)
¤ The other endpoint sends data sporadically

¨ If program blocks when it tries to read from socket?
¤ Unable to do anything else until data is actually available

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.14

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.27

Three techniques to handle such such situations

¨ I/O multiplexing
¤ Take all input sources and use system call, select(), to notify data availability

on any of them

¨ Polling
¤ Test if data is available from a particular source

n System call such as poll() is used
n In Java, available() on the FilterInputStream

¨ Signals
¤ File descriptor representing signal is set
¤ Asynchronous signal delivered to program when data is available
¤ Java does not support this

27

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.28

Writing to a socket may also block

¨ If there is a backlog getting data onto the network
¤ Does not happen in fast LAN settings
¤ But if it’s over the Internet? Possible.

¨ So, often handling TCP connections requires both a sender and
receiver thread

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.15

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.29

Writing programs that do I/O in Java?

¨ Use multiple threads
¤ Handle traditional, blocking I/O

¨ Use the NIO library

¨ Or both

29

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.30

We are trained to think linearly

¨ Often don’t see concurrent paths our programs may take

¨ No reason why processes that we conventionally think of as single-
threaded should remain so

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.16

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.31

Thread Abstraction

¨ A thread is a single execution sequence that represents a separately
schedulable task

¤ Single execution sequence
n Each thread executes sequence of instructions – assignments, conditionals, loops,

procedures, etc. – just as the sequential programming model

¤ Separately schedulable task
n The OS can run, suspend, or resume a thread at any time

31

COMPUTER SCIENCE DEPARTMENT

THREAD CREATION & MANAGEMENT

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.17

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.33

Computing the factorial of a number

public class Factorial {

 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);

 int factorial = 1;
 while (n>1) {
 factorial *=n;
 n--;
 }
 System.out.println(factorial);
 }
}

33

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.34

Behind the scenes …

¨ Instructions are executed as machine-level assembly instructions
¤ Each logical step requires many machine instructions to execute

¨ Applications are executed as a series of instructions
¤ The execution path of these instructions?

n Thread

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.18

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.35

Every program has at least one thread

¨ Thread executes the body of the application
¤ In Java, this is called the main thread

n Begins executing statements starting with the first statement of the main() method

¨ In Java every program has more than 1 thread
¤ E.g., threads that do garbage collection, compile bytecodes into machine-level

instructions, etc.
¤ Programs are highly threaded

n You may add additional application threads to this

35

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.36

Let’s add another task to our program

¨ Say, computing the square-root of a number

¨ What if we wrote these as separate threads?
¤ JVM has two distinct lists of instructions to execute

¨ Threads can be thought of as tasks that we execute at roughly the same
time

¨ But in that case, why not just write multiple applications?

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.19

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.37

Threads that run within the same application process

¨ Share the memory space of the process
¤ Information sharing is seamless

¨ Two diverse applications within the same machine may not
communicate so well
¤ For e.g., mail client and music application

37

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.38

In a multi-process environment data is separated by
default

¨ This is fine for dissimilar programs

¨ Not OK for certain types of programs; e.g., a network server sends
stock quotes to clients
¤ Discrete task: Sending quote to client

n Could be done in a separate thread

¤ Data sent to the clients is the same
n No point having a separate server for each client and …
n Replicating data held by the network server

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.20

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.39

Threads and sharing

¨ Threads within a process can access and share any object on the heap
¤ Each thread has space for its own local variables (stack)

¨ A thread is a discrete task that operates on data shared with other
threads

39

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.40

Thread Abstraction

¨ A thread is a single execution sequence that represents a separately
schedulable task

¤ Single execution sequence
n Each thread executes sequence of instructions – assignments, conditionals, loops,

procedures, etc. – just as the sequential programming model

¤ Separately schedulable task
n The OS can run, suspend, or resume a thread at any time

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.21

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

THREAD CREATION

41

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.42

Thread creation

¨ Using the Thread class

¨ Using the Runnable interface

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.22

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.43

The Thread class
package java.lang;

public class Thread implements Runnable {
 public Thread();
 public Thread(Runnable target);
 public Thread(ThreadGroup group, Runnable target);
 public Thread(String name);
 public Thread(ThreadGroup group, String name);
 public Thread(Runnable target, String name);
 public Thread(ThreadGroup group, Runnable target,
 String name);
 public Thread(ThreadGroup group, Runnable target,
 String name, long stackSize);

 public void start();
 public void run();

}

43

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.44

Threads require 4 pieces of information

¨ Thread name
¤ Default is Thread-N; N is a unique number

¨ Runnable target
¤ List of instructions that the thread executes
¤ Default: run() method of the thread itself

¨ Thread group
¤ A thread is assigned to the thread group of the thread that calls the constructor

¨ Stack size
¤ Store temporary variables during method execution
¤ Platform-dependent: range of legal values, optimal value, etc.

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.23

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.45

A simple thread

public class RandomGen extends Thread {
 private Random random;
 private int nextNumber;
 public RandomGen() {random = new Random();}

 public void run() {
 for (;;) {
 nextNumber = random.nextInt();
 try {

 } catch (InterruptedException ie) {
 ... return;
 }
 }
 }
}

45

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.46

About the code snippet

¨ Extends the Thread class

¨ Actual instructions we want to execute is in the run() method
¤ Standard method of the Thread class

n Place where Thread begins execution

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.24

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.47

Contrasting the run() and main() methods

¨ main() method
¤ This is where the first thread starts executing
¤ The main thread

¨ The run() method
¤ Subsequent threads start executing with this method

47

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.48

The contents of this slide-set are based on the
following references
¨ Java Threads. Scott Oaks and Henry Wong. . 3rd Edition. O’Reilly Press. ISBN: 0-596-

00782-5/978-0-596-00782-9. [Chapters 1, 2]

¨ Andrew S Tanenbaum. Modern Operating Systems. 3rd Edition, 2007. Prentice Hall.
ISBN: 0136006639/978-0136006633. [Chapter 2]

48

