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Threads: Reap What You Sow
Care to use more than a core?
       Let threads come to the fore

Maximize your utilizations they will
       Spurn them at your throughputs’ peril
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Frequently asked questions from the previous class 
survey

¨ Factory and singletons?

¨ Why cache the routes?
¨ ServerSockets

¤ What’s this wildcard?

¨ Term Project

2



SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.2

CSx55: Distributed Systems 
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.3

Topics covered in this lecture

¨ Threads
¤ Rationale
¤ Contrasting threads with processes
¤ Thread Creation
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THREADS

Many hands make light work. John Heywood (1546)
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Why should you care about threads?

¨ CPU clock rates have tapered off
¤ Days when you could count on “free” speed-up are long gone

¨ Manufacturers have transitioned to multicore processors
¤ Each with multiple hardware execution pipelines

¨ A single threaded process can utilize only one of these execution 
pipelines
¤ Reduced throughput

¨ But more importantly, threads are awesome!
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What we will look at

¨ Threads and its relation to processes
¨ Thread lifecycle
¨ Contrasting approaches to writing threads
¨ Data synchronization and visibility

¤ Avoiding race conditions
¨ Thread safety
¨ Sharing objects and confinement
¨ Locking strategies
¨ Writing thread-safe classes
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What are threads?

¨ Miniprocesses or lightweight processes

¨ Why would anyone want to have a kind of process within a process?
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The main reason for using threads

¨ In many applications multiple activities are going on at once
¤ Some of these may block from time to time

¨ Decompose application into multiple sequential threads
¤ Running concurrently
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Isn’t this precisely the argument for processes?

¨ Yes, but there is a new dimension …

¨ Threads have the ability to share the address space (and all of its 
data) among themselves

¨ For several applications
¤ Processes (with their separate address spaces) don’t work
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Threads execute their own piece of code 
independently of other threads, but …

¨ No attempt is made to achieve high-degree of concurrency 
transparency
¤ Especially, not at the cost of performance

¨ Only maintains information to allow a CPU to be shared among 
several threads

¨ Thread context
¤ CPU Context + Thread Management info

n List of blocked threads
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Information not strictly necessary to manage multiple 
threads is ignored

¨ Protecting data against inappropriate accesses by multiple threads in 
a process?
¤ Developers must deal with this
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Contrasting items unique & shared across threads

Per process items 
{Shared by threads with a process}

Per thread items
{Items unique to a thread}

Address space
Global variables
Open files
Child Processes
Pending alarms
Signals and signal handlers
Accounting Information

Program Counter
Registers
Stack
State
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A process with multiple threads of control can 
perform more than 1 task at a time

CODE DATA FILES CODE DATA FILES

Registers Stack Registers

Stack

Registers

Stack

Registers

Stack

Traditional Heavy weight process Process with multiple threads
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THREADS VS. MULTIPLE PROCESSES
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Why prefer multiple threads over multiple 
processes?

¨ Threads are cheaper to create and manage than processes

¨ Resource sharing can be achieved more efficiently between threads 
than processes
¤ Threads within a process share the address space of the process

¨ Switching between threads is cheaper than for processes

¨ BUT … threads within a process are not protected from one another
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Other costs for processes

¨ When a new process is created to perform a task there are other costs
¤ In a kernel supporting virtual memory the new process will incur page faults

n Due to data and instructions being referenced for the first time

¨ Hardware caches must acquire new cache entries for that particular 
process
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Contrasting the costs for threads               [1/2]

¨ With threads these overheads may also occur, but they are likely to be 
smaller

¨ When thread accesses code & data that was accessed recently by other 
threads in the process?
¤ Automatically take advantage of any hardware or main memory caching
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Contrasting the costs for threads               [2/2]

¨ Switching between threads is much faster than that between 
processes

¨ This is a cost that is incurred many times throughout the lifecycle of the 
thread or process
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Implications?

¨ Performance of a multithreaded application is seldom worse than a 
single threaded one
¤ Actually, leads to performance gains

¨ Development requires additional effort
¤ No automatic protection against each other
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Another drawback of processes is the overheads for 
IPC (Inter Process Communications)

Process A Process B

Operating System

Switch from kernel 
space to user space

Switch context from
process A to B

Switch from 
user space to
kernel space
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A process in memory

stack

heap

data

text
{Global variables}

{Function parameters, 
  return addresses, 
  and local variables}

max

low
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Why each thread needs its own stack                       [1/2]

¨ Stack contains one frame for each procedure called but not returned 
from

¨ Frame contains 
¤ Local variables 
¤ Procedure’s return address
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Why each thread needs its own stack                       [2/2]

¨ Procedure X calls procedure Y, Y then calls Z
¤ When Z is executing?

nFrames for X, Y and Z will be on the stack

¨ Each thread calls different procedures 
¤ So has a different execution history
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Each thread has its own stack

Kernel

Stack for 
thread
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Almost impossible to write programs in Java without 
threads

¨ We use multiple threads without even realizing it
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Blocking I/O: Reading data from a socket

¨ Program blocks until data is available to satisfy the read() method

¨ Problems:
¤ Data may not be available
¤ Data may be delayed (in transit)
¤ The other endpoint sends data sporadically

¨ If program blocks when it tries to read from socket?
¤ Unable to do anything else until data is actually available
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Three techniques to handle such such situations

¨ I/O multiplexing
¤ Take all input sources and use system call, select(), to notify data availability 

on any of them

¨ Polling
¤ Test if data is available from a particular source

n System call such as poll() is used
n In Java, available() on the FilterInputStream

¨ Signals
¤ File descriptor representing signal is set
¤ Asynchronous signal delivered to program when data is available
¤ Java does not support this
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Writing to a socket may also block

¨ If there is a backlog getting data onto the network
¤ Does not happen in fast LAN settings
¤ But if it’s over the Internet? Possible.

¨ So, often handling TCP connections requires both a sender and 
receiver thread
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Writing programs that do I/O in Java?

¨ Use multiple threads
¤ Handle traditional, blocking I/O

¨ Use the NIO library

¨ Or both
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We are trained to think linearly

¨ Often don’t see concurrent paths our programs may take

¨ No reason why processes that we conventionally think of as single-
threaded should remain so
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Thread Abstraction

¨ A thread is a single execution sequence that represents a separately 
schedulable task

¤ Single execution sequence
n Each thread executes sequence of instructions – assignments, conditionals, loops, 

procedures, etc. – just as the sequential programming model

¤ Separately schedulable task
n The OS can run, suspend, or resume a thread at any time
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Computing the factorial of a number

public class Factorial {

   public static void main(String[] args)  {
      int n = Integer.parseInt(args[0]);

      int factorial = 1;
      while (n>1) {
      factorial *=n;
         n--;
      }
      System.out.println(factorial);      
   }
}
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Behind the scenes …

¨ Instructions are executed as machine-level assembly instructions
¤ Each logical step requires many machine instructions to execute 

¨ Applications are executed as a series of instructions
¤ The execution path of these instructions?

n Thread
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Every program has at least one thread

¨ Thread executes the body of the application
¤ In Java, this is called the main thread

n Begins executing statements starting with the first statement of the main() method

¨ In Java every program has more than 1 thread
¤ E.g., threads that do garbage collection, compile bytecodes into machine-level 

instructions, etc.
¤ Programs are highly threaded

n You may add additional application threads to this
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Let’s add another task to our program

¨ Say, computing the square-root of a number

¨ What if we wrote these as separate threads?
¤ JVM has two distinct lists of instructions to execute

¨ Threads can be thought of as tasks that we execute at roughly the same 
time

¨ But in that case, why not just write multiple applications?

36



SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.19

CSx55: Distributed Systems 
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.37

Threads that run within the same application process

¨ Share the memory space of the process
¤ Information sharing is seamless

¨ Two diverse applications within the same machine may not 
communicate so well
¤ For e.g., mail client and music application
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In a multi-process environment data is separated by 
default

¨ This is fine for dissimilar programs

¨ Not OK for certain types of programs; e.g., a network server sends 
stock quotes to clients
¤ Discrete task: Sending quote to client

n Could be done in a separate thread

¤ Data sent to the clients is the same
n No point having a separate server for each client and …
n Replicating data held by the network server

38



SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.20

CSx55: Distributed Systems 
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L2.39

Threads and sharing

¨ Threads within a process can access and share any object on the heap
¤ Each thread has space for its own local variables (stack)

¨ A thread is a discrete task that operates on data shared with other 
threads
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Thread Abstraction

¨ A thread is a single execution sequence that represents a separately 
schedulable task

¤ Single execution sequence
n Each thread executes sequence of instructions – assignments, conditionals, loops, 

procedures, etc. – just as the sequential programming model

¤ Separately schedulable task
n The OS can run, suspend, or resume a thread at any time
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Thread creation

¨ Using the Thread class

¨ Using the Runnable interface
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The Thread class
package java.lang;

public class Thread implements Runnable { 
   public Thread();
   public Thread(Runnable target);
   public Thread(ThreadGroup group, Runnable target);
   public Thread(String name);
   public Thread(ThreadGroup group, String name);
   public Thread(Runnable target, String name);
   public Thread(ThreadGroup group, Runnable target, 
                 String name);
   public Thread(ThreadGroup group, Runnable target, 
                 String name, long stackSize);
 
   public void start();
   public void run(); 

}
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Threads require 4 pieces of information

¨ Thread name
¤ Default is Thread-N; N is a unique number

¨ Runnable target
¤ List of instructions that the thread executes
¤ Default: run() method of the thread itself

¨ Thread group
¤ A thread is assigned to the thread group of the thread that calls the constructor

¨ Stack size
¤ Store temporary variables during method execution
¤ Platform-dependent: range of legal values, optimal value, etc.
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A simple thread

public class RandomGen extends Thread {
   private Random random;
   private int nextNumber;
   public RandomGen() {random = new Random();}

   public void run() {
     for (;;) {
       nextNumber = random.nextInt();
       try {

       } catch (InterruptedException ie) {
            ... return;
       } 
     }
   }
}
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About the code snippet

¨ Extends the Thread class

¨ Actual instructions we want to execute is in the run() method
¤ Standard method of the Thread class

n Place where Thread begins execution
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Contrasting the run() and main() methods

¨ main() method
¤ This is where the first thread starts executing
¤ The main thread

¨ The run() method
¤ Subsequent threads start executing with this method
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The contents of this slide-set are based on the 
following references
¨ Java Threads. Scott Oaks and Henry Wong. . 3rd Edition. O’Reilly Press. ISBN: 0-596-

00782-5/978-0-596-00782-9. [Chapters 1, 2]

¨ Andrew S Tanenbaum. Modern Operating Systems. 3rd Edition, 2007. Prentice Hall. 
ISBN: 0136006639/978-0136006633. [Chapter 2]
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