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Orchestration despite chaos
Machines failing
    Stragglers on the rise
Disks spinning out of breadth
    having their bits flip

No matter
Distributed execution    plays out
    with indistinguishable outcomes
From that on a solitary, non-faulting node
    Only commensurately faster
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Frequently asked questions from the previous class 
survey

¨ BitTorrent
¤ Can a BitTorrent download stall if a chunk’s unavailable?
¤ BitTorrent: Metadata maintains file and chunk information?
¤ Who returns the set of peers? The tracker or the system?

¨ MapReduce
¤ Can distributed jobs be slower?
¤ How many nodes are needed to see a benefit?
¤ If I am processing a large number of files using MapReduce, mappers should

see different files?
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Topics covered in today’s lecture

¨ MapReduce
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EXAMPLES

History is Philosophy teaching 
by example. 

Thucydides
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Programs expressed as MapReduce computations: 
Distributed Grep

¨ Map
¤ Emit line if it matches specified pattern

¨ Reduce
¤ Just copy intermediate data to the output 

n The reducer here is an identity function

5

PEER-TO-PEER SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L20.6

Counts of URL access frequency

¨ Map
¤ Process logs of web page requests
¤ Output  <URL, 1>

¨ Reduce
¤ Add together all values for a particular URL
¤ Output  <URL, total count>
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Reverse Web-link Graph

¨ Map
¤ Outputs <target, source> pair for each target URL found in page 
source

¨ Reduce
¤ Concatenate list of all sources for a target URL
¤ Output <target, list(source)>
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Term-Vector per Host

¨ Summarizes important terms that occur in a set of documents  <word, 
frequency>

¨ For each input document, the Map
¤ Emits <hostname, term vector>

¨ Reduce function
¤ Has all per-document vectors for a given host
¤ Add term vectors; discard away infrequent terms

n <hostname, term vector>
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Inverted Index

¨ Map
¤ Parse each document
¤ Emit <word, document ID>

¨ Reduce
¤ Accept all pairs for a given word
¤ Sort document IDs
¤ Emit <word, list(document ID)> pair
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IMPLEMENTATION
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Implementation 

¨ Machines are commodity machines

¨ GFS is used to manage data stored on the disks
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Execution Overview – Part I

¨ Maps distributed across multiple machines

¨ Automatic partitioning of data into M splits

¨ Splits are processed concurrently on different machines
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Execution Overview – Part II

¨ Partition intermediate key space into R pieces

¨ E.g. hash(key) mod R

¨ User specified parameters
¤ Partitioning function
¤ Number of partitions (R)
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Execution Overview

Split 0
Split 1
Split 2
Split 3
Split 4

User 
Program

Master

Worker

Worker

Worker

Worker

Worker

Output 
file 0

Output 
file 1
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Execution Overview: Step I
The MapReduce library 

¨ Splits input files into M pieces
§ 16-64 MB per piece

¨ Starts up copies of the program on a cluster of machines
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Execution Overview: Step II
Program copies

¨ One of the copies is a Master

¨ There are M map tasks and R reduce tasks to assign

¨ Master
¤ Picks idle workers
¤ Assigns each worker a map or reduce task
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Execution Overview: Step III
Workers that are assigned a map task

¨ Read contents of their input split

¨ Parses <key, value> pairs out of the input data

¨ Pass each pair to user-defined Map function

¨ Intermediate <key, value> pairs from Maps
¤ Buffered in Memory
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Execution Overview: Step IV
Writing to disk

¨ Periodically, buffered pairs are written to disk

¨ These writes are partitioned
¤ By the partitioning function

¨ Locations of buffered pairs on local disk
¤ Reported back to Master
¤ Master forwards these locations to reduce workers
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Execution Overview: Step V
Reading Intermediate data

¨ Master notifies Reduce worker about locations

¨ Reduce worker reads buffered data from the local disks of Maps

¨ Read all intermediate data; sort by intermediate key
¤ All occurrences of the same key are grouped together
¤ Many different keys map to the same Reduce task

19

PEER-TO-PEER SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L20.20

Execution Overview: Step VI
Processing data at the Reduce worker

¨ Iterate over sorted intermediate data

¨ For each unique key pass
§ Key + set of intermediate values to Reduce function

¨ Output of the Reduce function is appended
¤ To output file of the reduce partition
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Execution Overview: Step VII
Waking up the user

¨ After all Map & Reduce tasks have been completed

¨ Control returns to the user code
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Master Data Structures

¨ For each Map and Reduce task
¤ State: {idle, in-progress, completed}
¤ Worker machine identity

¨ For each completed Map task store 
¤ Location and sizes of R intermediate file regions

¨ Information pushed incrementally to in-progress Reduce tasks
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FAULT TOLERANCE

I'm not afraid
Of anything in this world
There’s nothing you can throw at me
That I haven't already heard

I’m just trying to find
A decent melody
A song that I can sing
In my own company

Stuck in a Moment You Can’t Get Out Of, U2
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Worker failures

¨ Master pings worker periodically

¨ After a certain number of failed pings
¤ Master marks worker as having failed

¨ Any Map task completed by failed worker?
¤ Reset to initial idle state
¤ Eligible for rescheduling

24



SLIDES CREATED BY: SHRIDEEP PALLICKARA L20.13

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

PEER-TO-PEER SYSTEMSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L20.25

Why completed Map tasks are reexecuted

¨ Output is stored on local disk of failed machine
¤ Inaccessible

¨ All reduce workers are notified about reexecution

¨ Reduce tasks do not need to be reexecuted
¤ Output stored in GFS
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Master Failures

¨ Could checkpoint at the Master
¤ Data structures are well-defined

¨ However, since there is only one Master
¤ Assumption is that failure is unlikely

¨ If there is a Master failure?
¤ MapReduce computation is aborted!
¤ Client must check and retry MapReduce operation
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Semantics in the presence of failures:
If map and reduce operators are deterministic 

¨ Distributed execution output is identical to
¤ Non-faulting, sequential execution

¨ Atomic commits of map and reduce task outputs help achieve this
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Each in-progress task writes output to private 
temporary files

¨ Map task produces R such files
¤ When task completes, Map sends this info to the Master

¨ Reduce task produces one such file
¤ When reduce completes, worker atomically: 

n Renames temporary file to final output file
n Uses GFS to do this
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Locality

¨ Conserve network bandwidth

¨ Input files managed by GFS

¨ MapReduce master takes location of input files into account

¨ Schedule task on machine that contains a replica of the input slice
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Locality and its impact when running large 
MapReduce tasks

¨ Most input data is read locally

¨ Consumes no network bandwidth
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TASK GRANULARITY
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Task Granularity

¨ Subdivide map phase into M pieces

¨ Subdivide reduce phase into R pieces

¨ M, R >> number of worker machines

¨ Each worker performing many different tasks:
¤ Improves dynamic load balancing

¤ Speeds up recovery during failures
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Practical bounds on how large M and R can be

¨ Master must make O(M + R) scheduling decisions

¨ Keep O(MR) state in memory
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Practical bounds on how large M and R can be

¨ M is chosen such that 
¤ Input data is roughly 16 MB to 64 MB

¨ R constrained by users
¤ Output of each reduce is in a separate file

¨ R is a small multiple of the number of machines that will be used
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Typical values used at Google

¨ M = 200,000

¨ R = 5,000
¨ W = 2,000 worker machines
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BACKUP TASKS
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Stragglers

¨ Machine that takes an unusually long time to complete a map or 
reduce operation

¨ Can slow down entire computation
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How stragglers arise

¨ Machine with a bad disk
¤ Frequent, correctable errors
¤ Read performance drops from 30 MB/s to 1 MB/s

¨ Over scheduling
¤ Many tasks executing on the same machine
¤ Competition for CPU, memory, disk or network cycles

¨ Bug in machine initialization code
¤ Processor caches may be disabled
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Alleviating the problem of stragglers

¨ When a MapReduce operation is close to completion

¨ Schedule backup executions of remaining in-progress tasks

¨ Task completed when 
¤ Primary or backup finishes execution

¨ Significantly reduces time to complete large MapReduce operations
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Partitioning Function

¨ Users simply specify R
¤ The number of output files

¨ Default partitioning
§ hash(key) mod R

¨ Sometimes output keys are URLs
§ Entries from a host must go to same output file
§ hash(Hostname(urlkey)) mod R
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Ordering Guarantees

¨ Intermediate key/pairs are processed in increasing key order

¨ Easy to generate sorted output file
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The Combiner function

¨ There is significant repetition in intermediate keys produced by each 
map task

¨ For word-frequencies
¤ Each map may produce 100s or 1000s of <the, “1”>

¨ All of these counts sent over the network

¨ Combiner: Does partial merging of this data
¤ Before it is sent to reducer 
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Combiner function

¨ Executed on each machine that performs map task

¨ Code implementing combiner & reduce function
¤ Usually the same … [We will see an example where this is not true.]

¨ Difference?
¤ COMBINE: Output written to intermediate file
¤ REDUCE: Output written to final output file
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Input/Output Types: Support for reading input data 
in different formats

¨ Text mode treats every line as a <key, value> pair
¤ Key: Offset in the file
¤ Value: Contents of the line

¨ <key, value> pairs are sorted by key

¨ Each input type knows how to split itself  for 
¤ Processing as separate map tasks
¤ Text mode splitting occurs only at line boundaries
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Side-effects

¨ Besides intermediate files, other auxiliary files may be produced
¤ Side effects

¨ No atomic commits for multiple auxiliary files that are produced 
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Skipping Bad Records                 [1/3]

¨ Bugs in user code cause Map or Reduce functions to crash
¤ Deterministically: On certain records

¨ Fix the bug?
¤ Yes, but not always feasible

¨ Acceptable to ignore a few records 
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Skipping Bad Records                 [2/3]

¨ Optional mode of operation
① Detect records that cause deterministic crashes
② Skip them

¨ Each worker installs a signal handler to catch segmentation violations 
and bus errors
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Skipping Bad Records                 [3/3]

¨ Signal handler sends last gasp UDP packet to the Master
¤ Contains sequence number 

¨ When Master sees more than 1 failure at that record
¤ Indicates record should be skipped during next execution
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Local Execution

¨ Support for sequential execution of MapReduce operation on a 
single machine
¤ Helps with debugging, profiling, and testing

¨ Controls to limit computation to a particular map

¨ Invoke programs with a special flag
¤ Use debugging and testing tools 
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Status Information

¨ Master runs internal HTTP Server

¨ Exports pages for viewing

¨ Show the progress of a computation
¤ Number of tasks  in progress
¤ Number of tasks that completed
¤ Bytes of input
¤ Bytes of intermediate data
¤ Processing rate
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The contents of this slide-set are based on the 
following references
¨ Jeffrey Dean, Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large 

Clusters. OSDI 2004: 137-150

¨ Jeffrey Dean, Sanjay Ghemawat: MapReduce: simplified data processing on large 
clusters. Commun. ACM 51(1): 107-113 (2008)
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