
SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.1

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CSX55: DISTRIBUTED SYSTEMS [MAPREDUCE/HADOOP]

Shrideep Pallickara
Computer Science

Colorado State University

What’s this hullabaloo about an elephant?
No, not the one named Horton
 Who has fun in the Jungle of Nool

This one’s named Hadoop, and is just as cool
 Crunching through data and having fun

1

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.2

Frequently asked questions from the previous class
survey

¨ Why are intermediate map outputs not put in GFS?

¨ Since there are more mappers than reducers, will there be machines
with only mapper tasks?

¨ Is there a standardized number of reducers that is typically chosen?

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.2

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.3

Topics covered in today’s lecture

¨ MapReduce

¨ Hadoop

3

COMPUTER SCIENCE DEPARTMENT

BACKUP TASKS

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.3

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.5

Stragglers

¨ Machine that takes an unusually long time to complete a map or
reduce operation

¨ Can slow down entire computation

5

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.6

How stragglers arise

¨ Machine with a bad disk
¤ Frequent, correctable errors
¤ Read performance drops from 30 MB/s to 1 MB/s

¨ Over scheduling
¤ Many tasks executing on the same machine
¤ Competition for CPU, memory, disk or network cycles

¨ Bug in machine initialization code
¤ Processor caches may be disabled

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.4

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.7

Alleviating the problem of stragglers

¨ When a MapReduce operation is close to completion

¨ Schedule backup executions of remaining in-progress tasks

¨ Task completed when
¤ Primary or backup finishes execution

¨ Significantly reduces time to complete large MapReduce operations

7

COMPUTER SCIENCE DEPARTMENT

REFINEMENTS

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.5

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.9

Partitioning Function

¨ Users simply specify R
¤ The number of output files

¨ Default partitioning
§ hash(key) mod R

¨ Sometimes output keys are URLs
§ Entries from a host must go to same output file
§ hash(Hostname(urlkey)) mod R

9

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.10

Ordering Guarantees

¨ Intermediate key/pairs are processed in increasing key order

¨ Easy to generate sorted output file

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.6

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.11

The Combiner function

¨ There is significant repetition in intermediate keys produced by each
map task

¨ For word-frequencies
¤ Each map may produce 100s or 1000s of <the, “1”>

¨ All of these counts sent over the network

¨ Combiner: Does partial merging of this data
¤ Before it is sent to reducer

11

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.12

Combiner function

¨ Executed on each machine that performs map task

¨ Code implementing combiner & reduce function
¤ Usually the same … [We will see an example where this is not true.]

¨ Difference?
¤ COMBINE: Output written to intermediate file
¤ REDUCE: Output written to final output file

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.7

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.13

Input/Output Types: Support for reading input data
in different formats

¨ Text mode treats every line as a <key, value> pair
¤ Key: Offset in the file
¤ Value: Contents of the line

¨ <key, value> pairs are sorted by key

¨ Each input type knows how to split itself for
¤ Processing as separate map tasks
¤ Text mode splitting occurs only at line boundaries

13

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.14

Side-effects

¨ Besides intermediate files, other auxiliary files may be produced
¤ Side effects

¨ No atomic commits for multiple auxiliary files that are produced

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.8

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.15

Skipping Bad Records [1/3]

¨ Bugs in user code cause Map or Reduce functions to crash
¤ Deterministically: On certain records

¨ Fix the bug?
¤ Yes, but not always feasible

¨ Acceptable to ignore a few records

15

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.16

Skipping Bad Records [2/3]

¨ Optional mode of operation
① Detect records that cause deterministic crashes
② Skip them

¨ Each worker installs a signal handler to catch segmentation violations
and bus errors

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.9

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.17

Skipping Bad Records [3/3]

¨ Signal handler sends last gasp UDP packet to the Master
¤ Contains sequence number

¨ When Master sees more than 1 failure at that record
¤ Indicates record should be skipped during next execution

17

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.18

Local Execution

¨ Support for sequential execution of MapReduce operation on a
single machine
¤ Helps with debugging, profiling, and testing

¨ Controls to limit computation to a particular map

¨ Invoke programs with a special flag
¤ Use debugging and testing tools

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.10

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.19

Status Information

¨ Master runs internal HTTP Server

¨ Exports pages for viewing

¨ Show the progress of a computation
¤ Number of tasks in progress
¤ Number of tasks that completed
¤ Bytes of input
¤ Bytes of intermediate data
¤ Processing rate

19

COMPUTER SCIENCE DEPARTMENT

HADOOP

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.11

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.21

Hadoop

¨ Java-based open-source implementation of MapReduce

¨ Created by Doug Cutting

¨ Origins of the name Hadoop
¤ Stuffed yellow elephant

¨ Includes HDFS [Hadoop Distributed File System]

21

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.22

Hadoop timelines

¨ Feb 2006
¤ Apache Hadoop project officially started
¤ Adoption of Hadoop by Yahoo! Grid team

¨ Feb 2008
¤ Yahoo! Announced its search index was generated by a 10,000-core

Hadoop cluster

¨ May 2009
¤ 17 clusters with 24,000 nodes

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.12

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.23

Hadoop Releases

¨ There are two active releases at the moment
¤ 2.10.x
¤ 3.4.x

23

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.24

Hadoop Evolution

¨ 0.20.x series became 1.x series
¨ 0.23.x was forked from 0.20.x to include some major features

¨ 0.23 series later became 2.x series
¨ 2.8.0 is branched off from 2.7.3

¨ 2.9.0 is branched off from 2.8.2

¨ 3.0.0 series is branched off from 2.7.0

¨ 3.1.0 series is branched off from 3.0.0
¨ 3.2.0 is branched off from 3.1.0

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.13

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.25

0.23 included several major features

¨ New MapReduce runtime, called MapReduce 2, implemented on a
new system called YARN
¤ YARN: Yet Another Resource Negotiator
¤ Replaces the “classic” runtime in previous releases

¨ HDFS federation
¤ HDFS namespace can be dispersed across multiple name nodes

¨ HDFS high-availability
¤ Removes name node as a single point of failure; supports standby nodes for

failover

25

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.26

3.x includes major features

¨ Hadoop Submarine support
¤ Hadoop Submarine is a new project that orchestrates Tensorflow programs without

modifications on Yarn and provide access to data stored on HDFS
¤ Support for GPUs and Docker images

¨ Erasure coding in HDFS
¨ New/Improved storage connectors

¤ ADLS (Azure Datalake Generation 2), Amazon S3, and Amazon DynamoDB
¨ HDFS storage policies

¤ Hierarchical storage – Archival, Disk (default), SSD, and RamDisk
¤ Users can define the type of storage when storing data
¤ Blocks can be moved between different storage types

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.14

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.27

The Hadoop Ecosystem

Hadoop Distributed File System (HDFS)

Programming Model
MapReduce

NoSQL Storage
HBase

High Level Abstractions

Pig Hive

Enterprise
Data Integration

Sqoop

Flume

Workflow

Oozie

Coordination

Zookeeper

27

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.28

MapReduce Jobs

¨ A MapReduce Job is a unit of work

¨ Consists of:
¤ Input Data
¤ MapReduce program
¤ Configuration information

¨ Hadoop runs the jobs by dividing it into tasks
¤ Map tasks
¤ Reduce tasks

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.15

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.29

Types of nodes that control the job execution process
[Older Versions]

¨ Job tracker
¤ Coordinates all jobs by scheduling tasks to run on task trackers
¤ Records overall progress of each job

n If task fails, reschedule on a different task tracker

¨ Task tracker
¤ Run tasks and reports progress to job tracker

29

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.30

Types of nodes that control the job execution process
[Newer Versions]

¨ Resource Manager

¨ Application Manager

¨ Node manager

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.16

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

PROCESSING A WEATHER DATASET

31

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.32

Processing a weather dataset

¨ The dataset is from NOAA

¨ Stored using a line-oriented format
¤ Each line is a record

¨ Lots of elements being recorded

¨ We focus on temperature
¤ Always present with a fixed width

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.17

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.33

Format of a record in the dataset
0057
332130 # USAF weather station identifier
99999 # WBAN weather station identifier
19500101 # Observation date
300 # Observation time
4
+51317 # latitude (degrees x 1000)
+028783 # longitude (degrees x 1000)
FM-12
+0171 # elevation (meters)
99999
V020
320 # wind direction (degrees)
1 # quality code
…
-0128 # air temperature (degrees Celsius x 10)
1 # quality code
-0139 # dew point temperature (degree Celsius x 10)

33

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.34

Analyzing the dataset

¨ What’s the highest recorded temperature for each year in the
dataset?

¨ See how programs are written
¤ Using Unix tools
¤ Using MapReduce

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.18

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.35

Using awk
Tool for processing line-oriented data

#! /usr/bin/env bash
for year in all/*
do

echo –ne ‘basename $year .gz’ ”\t”
gunzip –c $year | \

awk ‘{ temp=substr($0, 88, 5) + 0;
q=substr($0, 93, 1);
if (temp !=9999 && q ~ /[01459]/ &&

temp > max) max = temp }
END {print max}’

done

35

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.36

Sample output that is produced

% ./max_temperature.sh

1901 317
1902 244
1903 289
1904 256
1905 283
 …

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.19

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.37

To speed things up, we need to be able to do this
processing on multiple machines

¨ STEP 1: Divide the work and execute concurrently on multiple machines

¨ STEP 2: Combine results from independent processes

¨ STEP 3: Deal with failures that might take place in the system

37

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.38

The Hollywood principle
Don’t call us, we’ll call you.

¨ Useful software development technique

¨ Object’s (or component’s) initial condition and ongoing life cycle is
handled by its environment, rather than by the object itself

¨ Typically used for implementing a class/component that must fit into
the constraints of an existing framework

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.20

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.39

Doing the analysis with Hadoop

¨ Break the processing into two phases
¤ Map and Reduce
¤ Each phase has <key, value> pairs as input and output

¨ Specify two functions
¤ Map
¤ Reduce

39

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.40

The map phase

¨ Choose a Text input format
¤ Each line in the dataset is given as a text value
¤ key is the offset of the beginning of the line from the beginning of the file

¨ Our map function
¤ Pulls out year and the air temperature
¤ Think of this as a data preparation phase

n Reducer will work on data generated by the maps

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.21

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.41

How the data is represented in the actual file

0067011990999991950051507004...9999999N9+00001+99999999999...
0043011990999991950051512004...9999999N9+00221+99999999999...
0043011990999991950051518004...9999999N9-00111+99999999999...
0043012650999991949032412004...0500001N9+01111+99999999999...
0043012650999991949032418004...0500001N9+00781+99999999999...

41

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.42

How the lines in the file are presented to the map
function by the framework

(0, 0067011990999991950051507004...9999999N9+00001+99999999999...)
(106, 0043011990999991950051512004...9999999N9+00221+99999999999...)
(212, 0043011990999991950051518004...9999999N9-00111+99999999999...)
(318, 0043012650999991949032412004...0500001N9+01111+99999999999...)
(424, 0043012650999991949032418004...0500001N9+00781+99999999999...)

The lines are presented to the map function as key-value pairs

keys: Line offsets within the file

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.22

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.43

Map function

¨ Extract year and temperature from each record and emit output

(1950, 0)
(1950, 22)
(1950, -11)
(1949, 111)
(1949, 78)

43

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.44

The output from the map function

¨ Processed by the MapReduce framework before being sent to the
reduce function
¤ Sort and group <key, value> pairs by key

¨ In our example, each year appears with a list of all its temperature
readings

(1949, [111, 78])
(1950, [0, 22, -11])
...

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.23

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.45

What about the reduce function?

¨ All it has to do now is iterate through the list supplied by the maps and
pick the max reading

¨ Example output at the reducer?

(1949, 111)
(1950, 22)
...

45

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.46

What does the actual code to do all of this look
like?

① Map functionality

② Reduce functionality

③ Code to run the job

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.24

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.47

The map function is represented by an abstract
Mapper class

¨ Declares an abstract map() method

¨ Mapper class is a generic type
¤ 4 formal type parameters
¤ Specifies input key, input value, output key, and output value

47

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.48

The Mapper for our example
public class MaxTemperatureMapper extends
 Mapper <LongWritable, Text, Text, IntWritable> {

 private final int MISSING = 9999;
 public void map(LongWritable key, Text value, Context context)
 throws IOException, InterruptedException {
 String line = value.toString();
 String year = line.substring(15, 19);
 int airTemperature;
 if (line.charAt(87) == `+`) {
 airTemperature = Integer.parseInt(line.substring(88, 92));
 } else {
 airTemperature = Integer.parseInt(line.substring(87, 92));
 }
 String quality = line.substring(92, 93);
 if (airTemperature != MISSING && quality.matches(“[01459]”) {
 context.write(new Text(year), new IntWritable(airTemperature));
 }
 }
}

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.25

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.49

Rather than use built-in Java types, Hadoop uses its
own set of basic types

¨ Optimized for network serialization

¨ These are in the org.apache.hadoop.io package
¤ LongWritable corresponds to Java Long
¤ Text corresponds to Java String
¤ IntWritable corresponds to Java Integer

49

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.50

But the map() method also had Context

¨ You use this to write the output

¨ In our example
¤ Year was written as a Text object
¤ Temperature was wrapped as an IntWritable

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.26

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.51

More about Context

¨ A context object is available at any point of the MapReduce execution

¨ Provides a convenient mechanism for exchanging required system and
job-wide information

¨ Context coordination happens only when an appropriate phase
(driver, map, reduce) of a MapReduce job starts.
¤ Values set by one mapper are not available in another mapper but is

available in any reducer

51

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.52

The reduce function is represented by an abstract
Reducer class

¨ Declares an abstract reduce() method

¨ Reducer class is a generic type
¤ 4 formal type parameters
¤ Used to specify the input and output types of the reduce function
¤ The input types should match the output types of the map function

n In the example, Text and IntWritable

52

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.27

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.53

The Reducer

public class MaxTemperatureReducer extends
 Reducer <Text, IntWritable, Text, IntWritable> {

 public void reduce(Text key, Iterable<IntWritable> values,
 Context context)
 throws IOException, InterruptedException {

 int maxValue = Integer.MIN_VALUE;
 for (IntWritable value : values) {
 maxValue = Math.max(maxValue, value.get());
 }
 context.write(key, new IntWritable(maxValue));
 }
}

53

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.54

The code to run the MapReduce job

public class MaxTemperature {
 public static main(String[] args) throws Exception {
 Job job = Job.getInstance();
 job.setJarByClass(MaxTemperature.class);
 job.setJobName(“Max temperature”);

 FileInputFormat.addInputPath(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.setMapperClass(MaxTemperatureMapper.class);
 job.setReducerClass(MaxTemperatureReducer.class);

 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);

 System.exit(job.waitForCompletion(true) ? 0: 1);
 }
}

54

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.28

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.55

Details about the Job submission [1/3]

¨ Code must be packaged in a JAR file for Hadoop to distribute over
the cluster
¤ setJarByClass() causes Hadoop to locate relevant JAR file by looking

for JAR that contains this class

¨ Input and output paths must be specified next
¤ addInputPath() can be called more than once
¤ setOutputPath() specifies the output directory

n Directory should not exist before running the job

n Precaution to prevent data loss

55

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.56

Details about the Job submission [2/3]

¨ The methods setOutputKeyClass() and setOutputValueClass()
¤ Control the output types of the map and reduce functions
¤ If they are different?

n Map output types can be set using setMapOutputKeyClass() and
setMapOutputValueClass()

56

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.29

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.57

Details about the Job submission. [3/3]

¨ The waitforCompletion() method submits the job and waits for it
to complete
¤ The boolean argument is a verbose flag; if set, progress information is

printed on the console

¨ Return value of waitforCompletion() indicates success (true) or
failure (false)
¤ In the example this is the program’s exit code

(0 or 1)

57

COMPUTER SCIENCE DEPARTMENT

API DIFFERENCES

58

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.30

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.59

The old and new MapReduce APIs

¨ The new API favors abstract classes over interfaces
¤ Make things easier to evolve

¨ New API is in org.apache.hadoop.mapreduce package
¤ Old API can be found in org.apache.hadoop.mapred

¨ New API makes use of context objects
¤ Context unifies roles of JobConf, OutputCollector, and Reporter

from the old API

59

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.60

The old and new MapReduce APIs

¨ In the new API, job control is done using the Job class rather than
using the JobClient

¨ Output files are named slightly differently
¤ Old API: Both map and reduce outputs are named part-nnnn
¤ New API: Map outputs are named part-m-nnnn and reduce outputs are

named part-r-nnnn

60

SLIDES CREATED BY: SHRIDEEP PALLICKARA L24.31

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.61

The old and new MapReduce APIs

¨ The new API’s reduce() method passes values as Iterable rather
than as Iterator
¤ Makes it easier to iterate over values using the for-each loop construct

for (VALUEIN value: values) {
 …
}

61

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L24.62

The contents of this slide-set are based on the
following references
¨ Jeffrey Dean, Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large

Clusters. OSDI 2004: 137-150

¨ Jeffrey Dean, Sanjay Ghemawat: MapReduce: simplified data processing on large
clusters. Commun. ACM 51(1): 107-113 (2008)

¨ Tom White. Hadoop: The Definitive Guide. 3rd Edition. Early Access Release. O’Reilly
Press. ISBN: 978-1-449-31152-0. Chapters 1 and 2.

¨ Boris Lublinsky, Kevin Smith, and Alexey Yakubovich. Professional Hadoop Solutions.
Wiley Press. Chapter 3.

62

