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CSx55: DISTRIBUTED SYSTEMS [HADOOP]

Trying to have your cake and eat it too

Each phase pines for tasks with locality and their numbers on a tether
Alas within a phase, you get one, but not the other

Who gets what?
Stay tuned to find out

Shrideep Pallickara
Computer Science
Colorado State University

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

Frequently asked questions from the previous class
survey

How does the runtime infer <key, values>2 Shouldn’t the mapper do
this?

Can Hadoop be deployed on a per-user basis? Or, is it restricted to a
per-machine basis?

If each chunk is replicated 3 times, are you launching a mapper on all
3¢

Is the combiner solely for optimization?
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Topics covered in today’s lecture
Hadoop
COLORADD STATE UNIVERSITY (oo e e emarrmenr  HADOOP L25.3
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The code to run the MapReduce job
public class MaxTemperature {
public static main(String[] args) throws Exception {
Job job = Job.getInstance();
job.setJarByClass(MaxTemperature.class);
job.setJobName(“Max temperature”);
FileInputFormat.addInputPath(job, new Path(args[@]));
FileOutputFormat.setOutputPath(job, new Path(Cargs[1]));
job.setMapperClass(MaxTemperatureMapper.class);
job.setReducerClass(MaxTemperatureReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
System.exit(job.waitForCompletion(true) ? @: 1);
}
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Details about the Job submission [1/3]

Code must be packaged in a JAR file for Hadoop to distribute over
the cluster

setJarByClass () causes Hadoop to locate relevant JAR file by looking
for JAR that contains this class

Data input and output paths must be specified next
addInputPath () can be called more than once
setOutputPath () specifies the output directory

Directory should not exist before running the job

Precaution to prevent data loss

Professor: SHRIDEEP PALLICKARA
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Details about the Job submission [2/3]

The methods setOutputKeyClass () and setOutputValueClass ()
Control the output types of the map and reduce functions
If they are different?

Map output types can be set using setMapOutputKeyClass () and
setMapOutputValueClass ()

Professor: SHRIDEEP PALLICKARA
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Details about the Job submission. [3/3]

The waitforCompletion () method submits the job and waits for it
to complete
The boolean argument is a verbose flag; if set, progress information is
printed on the console

Return value of waitforCompletion () indicates success (true) or
failure (false)

In the example this is the program’s exit code

(@orl)
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API DIFFERENCES
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The old and new MapReduce APIs

The new API favors abstract classes over interfaces

Make things easier to evolve

New APl is in org.apache.hadoop.mapreduce package
Old API can be found in org.apache.hadoop.mapred

New APl makes use of context objects

Context unifies roles of JobConf, OutputCollector, and Reporter
from the old API

Professor: SHRIDEEP PALLICKARA
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The old and new MapReduce APIs

In the new API, job control is done using the Job class rather than
using the JobClient

Output files are named slightly differently
Old API: Both map and reduce outputs are named part-nnnn

New APl: Map outputs are named part-m-nnnn and reduce outputs are
named part-r-nnnn

Professor: SHRIDEEP PALLICKARA
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The old and new MapReduce APIs

(B
01 The new API's reduce () method passes values as Tterable rather
than as Iterator

1 Makes it easier to iterate over values using the for-each loop construct

for (VALUEIN value: values) {

}

Professor: SHRIDEEP PALLICKARA
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Hadoop divides the input to a MapReduce job into
fixed-sized pieces
These are called input-splits or just splits

Creates one map task per split

Runs user-defined map function for each record in the split

Professor: SHRIDEEP PALLICKARA
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Split strategy: Having many splits

Time taken to process split is small compared to processing the whole
input

Quality of load balancing increases as splits become fine-grained
Faster machines process proportionally more splits than slower machines

Even if machines are identical, this feature is desirable

Failed tasks get relaunched, and there are other jobs executing concurrently

Professor: SHRIDEEP PALLICKARA
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Split strategy: If the splits are too small
Overheads for managing splits and map task creation dominates total
job execution time

Good split size tends to be an HDFS block

This could be changed for a cluster or specified when each file is created

Professor: SHRIDEEP PALLICKARA
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Scheduling map tasks

Hadoop does its best to run a map task on the node where input data
resides in HDFS

Data locality

What if all three nodes holding the HDFS block replicas are busy?
Find free map slot on node in the same rack
Only when this is not possible, is an off-rack node utilized

Inter-rack network transfer

Professor: SHRIDEEP PALLICKARA
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Why the optimal split size is the same as the block
size ...

Largest size of input that can be stored on a single node

If split size spanned two blocks?
Unlikely that any HDFS node has stored both blocks
Some of the split will have to be transferred across the network to node

running the map task

Less efficient than operating on local data without the network movement

Professor: SHRIDEEP PALLICKARA
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MANAGING OUTPUTS

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY
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Map task outputs

Stored on the local disk
Not HDFS

Once the job is complete, intermediate map outputs are thrown
away

Storing in HDFS with replication is an overkill

Professor: SHRIDEEP PALLICKARA
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Reduce tasks do not have the advantage of data
locality

Input to a single reduce task
Output from all the mappers

Sorted map outputs transferred over the network to node where reduce task
is running

Merged and then passed to the reduce function

Output of reduce task stored on HDFS

One replica of block is stored on local node, other replicas are stored on
off-rack nodes

Professor: SHRIDEEP PALLICKARA
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Number of reduce tasks

Not governed by the size of the input

Specified independently

Professor: SHRIDEEP PALLICKARA
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When there are multiple reducers

Maps partition their outputs
One partition for each reduce task
There can be many keys in each partition

Records for a given key are all in the same partition

Partitioning controlled with a partitioning function

Default uses a hash function to bucket the key space

Professor: SHRIDEEP PALLICKARA
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DATA FLOW
COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY
23
MapReduce Dataflow
[ Input HDFS
Output HDFS
split0 ~ Map Copy
. Merge Sort
> Reduce — Part0 —>
I HDFS
lit 1 [ Replication
splitl ~  Map - | Sort
Merge
> > Reduce —+ Partl —>
I HDFS
split2 + Map Replication
COLORADO STATE UNIVERSITY  Gonmonen Soenos Deparrveny  HADOOP 125.24
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In Hadoop a Map task has 4 phases
Record reader
Mapper
Combiner
Partitioner
25
Map task phases: Record Reader
Translates input splits into records
Parse data into records, but does not parse the record itself
Passes the data to the mapper in the form of a key/value pair
key in this context is positional information
value is the chunk of data that comprises a record
COLORADD STATE UNIVERSITY  (oreser S et arrment  HADOOP L25.26
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Map task phases: Map

User-provided code is executed on each key/value pair from the
record reader

This user-code produces zero or more new key/value pairs, called the
intermediate pairs

key is what the data will be grouped on and value is the information
pertinent to the analysis in the reducer

Choice of key/value pairs is critical and not arbitrary

Professor: SHRIDEEP PALLICKARA
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Map task phases: Combiner

Can group data in the map phase

Takes the intermediate keys from the mapper and applies a user-
provided method to aggregate values in the small scope of that one
mapper

Significantly reduces the amount of data that has to move over the
network

Sending (“hello”, 3) requires fewer bytes than sending (“hello”, 1) three
times over the network

Professor: SHRIDEEP PALLICKARA
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Map task phases: Partitioner [1/2]

Takes the intermediate key/value pairs from the mapper (or combiner)
and splits them up into shards, one shard per reducer

Default: key.hashCode() % (number of reducers)
Randomly distributes the keyspace evenly over the reducers

But still ensures that keys with the same value in different mappers end up at
the same reducer

Professor: SHRIDEEP PALLICKARA
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Map task phases: Partitioner [2/2]

Partitioner can be customized (e.g., for sorting)

Changing the partitioner is rarely necessary

The partitioned data is written to the local file system for each map
and waits to be pulled by its respective reducer

Professor: SHRIDEEP PALLICKARA
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In Hadoop a Reduce task has 4 phases

Shuffle
Sort

Reducer

Output format

Professor: SHRIDEEP PALLICKARA
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Reduce task phases: Shuffle and sort

Shuffle

Takes the output files written by all of the partitioners and downloads them
to the local machine in which the reducer is running

Sort
Individual data pieces are then sorted by key into one larger data list

Groups equivalent keys together so that their values can be iterated over
easily in the reduce task

Professor: SHRIDEEP PALLICKARA
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Reduce task phases: Shuffle and sort

This phase is not customizable and the framework handles everything
automatically

The only control a developer has is how the keys are sorted and
grouped by specifying a custom Comparator object

Professor: SHRIDEEP PALLICKARA
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Reduce task phases: Reducer

Takes the grouped data as input and runs a reduce function once per
key grouping

The function is passed the key and an iterator/iterable over all of the
values associated with that key
A wide range of processing can happen in this function: data can be
aggregated, filtered, and combined etc.

Once the reduce function is done, it sends zero or more key/value
pairs to the final step, the output format

N.B.: map & reduce functions will change from job to job

Professor: SHRIDEEP PALLICKARA
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Reduce task phases: Output format

0 Translates the final key /value pair from the reduce function and writes
it out to a file using a record writer

01 By default:

o Separate the key and value with a tab

o Separates records with a newline character

01 Can typically be customized to provide richer output formats

1 But in the end, the data is written out to HDFS, regardless of format

Professor: SHRIDEEP PALLICKARA
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COMBINER FUNCTIONS

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY
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Combiner functions

Many MapReduce jobs are limited by the available network
bandwidth

Framework has mechanisms to minimize the data transferred between map
and reduce tasks

A combiner function is run on the map output

Combiner output fed to the reduce task

Professor: SHRIDEEP PALLICKARA
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Combiner function

No guarantees on how many times Hadoop will call this on a map

output record

The combiner should, however, result in the same output from the reducer

Contract for the combiner constrains the type of function that can be
used

Professor: SHRIDEEP PALLICKARA
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Combiner function: Let’s look at the maximum
temperature example

[1/2]

[
(1950, @)
(1950, 20)
(1950, 10)
Map 1
(1950,
[0, 20, 10, 25, 151) Reduce {1950, 25)
(1950, 25)
(1950, 15)
Map 2
COLORADD STATE UNIVERSITY (oo e e emarrmenr  HADOOP L25.39
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Combiner function: Let’s look at the maximum
temperature example [2/2]
[
(1950, 0)
(1950, 20)
(1950, 10)
Map 1 IIIIH!!HEII[
(1950, [20, 25]) Reduce (1950, 25)
1950, 25
(1950, 15)
Map 2
COLORADD STATE UNIVERSITY  (oreser S et arrment  HADOOP L25.40
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A closer look at the function calls

max(0, 20, 10, 25, 15) =
max (max(@, 20, 10), max(25, 15)) =
max (20, 25) = 25

Functions with this property are called commutative and associative
Commutative: Order of operands (5+2) = (2 + 5)
Division and subtraction are not commutative

Associative: Order of operators 5 x (5x3) = (5x5)x3

Vector cross products are not

Professor: SHRIDEEP PALLICKARA
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Not all functions posses the commutative and
associative properties

What if we were computing the mean temperatures?

We can cannot use mean as our combiner function

mean(@, 20, 10, 25, 15) = 14
BUT

mean(mean(@, 20, 1@), mean(25, 15)) =
mean(10, 20) = 15

Professor: SHRIDEEP PALLICKARA
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Combiner: Summary

The combiner does not replace the reduce function

Reduce is still needed to process records from different maps

But it is useful for cutting down traffic from maps to the reducer

Professor: SHRIDEEP PALLICKARA
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Specifying a combiner function

public class MaxTemperatureWithCombiner {
public static main(String[] args) throws Exception {
Job job = Job.getInstance();
job.setJarByClass(MaxTemperature.class);
job.setJobName(“Max temperature”);

FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.setMapperClass(MaxTemperatureMapper.class);
job.setCombinerClass(MaxTemperatureReducer.class);
job.setReducerClass(MaxTemperatureReducer.class);

job.setOutputKey(Text.class);
job.setOutputValueClass(IntWritable.class);

System.exit(job.waitForCompletion(true) ? 0: 1);

}
Professor: SHRIDEEP PALLICKARA
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ANOTHER EXAMPLE (COMBINER)

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY
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Another example with StackOverflow [1/2]

Given a list of user’'s comment determine the average comment length
per-hour

To calculate average we need two things:
Sum values that we want to average

Number of values that went into the sum

Professor: SHRIDEEP PALLICKARA
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Another example with StackOverflow [2/2]

Reducer can do this very easily by iterating through each value in the
set and adding to a running sum while keeping count

But if you do this you cannot use the reducer as your combiner!

Calculating an average is not an associative operation

You cannot change the order of the operators
mean(0, 20, 10, 25, 15) = 14 BUT ..
mean(mean(0, 20, 10), mean(25, 15)) = mean(10, 20) = 15

Professor: SHRIDEEP PALLICKARA
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Approach to ensuring code reuse at the combiner

Mapper will output two columns of data

Count and average

Reducer will multiply “count” field by the “average” field to add to a
running count  and  add “count” to the running count

Then divide the running sum with running count

Output the count with the calculated average

Professor: SHRIDEEP PALLICKARA
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Mapper code
|

public static class AverageMapper extends
Mapper < Object, Text, IntWritable, CountAverageTuple > {

private CountAverageTuple outCountAverage = new CountAverageTuple();
public void map( Object key, Text value, Context context)
throws IOException, InterruptedException ({
Map < String, String > parsed =
MRDPUtils.transformXmlToMap ( value.toString());
String strDate = parsed.get (" CreationDate");
String text = parsed.get (" Text");
// get the hour this comment was posted in
Date creationDate = frmt.parse( strDate);
outHour.set ( creationDate.getHours());

outCountAverage.setCount ( 1);
outCountAverage.setAverage ( text.length());

// write out the hour with the comment length
context.write( outHour, outCountAverage);

}
COLORADD STATE UNIVERSITY (oo o e B emarrmenr  HADOOP L25.49
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Reducer code
|

public class AverageReducer extends Reducer < IntWritable,
CountAverageTuple, IntWritable, CountAverageTuple > {
private CountAverageTuple result = new CountAverageTuple();

public void

reduce (IntWritable key, Iterable < CountAverageTuple > values,
Context context) throws IOException, InterruptedException {
float sum = 0; float count = 0;

// Iterate through all input values for this key

for (CountAverageTuple val : values) {
sum + = val.getCount () * val.getAverage();
count + = val.getCount();

}

result.setCount ( count);

result.setAverage( sum / count);

context.write( key, result);

}

Professor: SHRIDEEP PALLICKARA
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Data flow for the average example
(B
nputkey ImputValve g
-- Combiner executes over Groups 1 and 2
—_ DOES NOT execute on the last two rows
- [ 4 1 10
2
9 4 1 8
(V)
4 1 21
~
e 3 1 1 ombiner Output/ Reducer Input
]
9 1 7 _--
9 1 12
3 2 10
4 13
9 1 7
9 1 12

L25.51
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Rationale

Datasets often outgrow storage capacity of a single machine

Necessary to partition data across multiple machines

File systems managing storage access across a network of machines

Distributed file systems

Professor: SHRIDEEP PALLICKARA
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HDFS is designed for storing ...

Very large files

File sizes are in the order of 100s of GB or a few TB

With streaming data access patterns
Write-once, read many times pattern

Each analysis involves a large portion of the dataset

Time to read dataset is more important than latency for the first record

On commodity hardware

Professor: SHRIDEEP PALLICKARA
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What is HDFS not suitable for¢

Low-latency data access

Lots of small files
Name nodes holds file system metadata in memory

Each file, directory and block takes about 150 bytes

If there were 109 files each of which had 1 block
300 MB of memory

Millions of files are feasible but not billions of files

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY  CopmpyteR SCIENCE DEPARTMENT Hapoop
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What is HDFS not suitable for¢

Multiple writers, arbitrary file modifications

HDFS does not support:
Multiple concurrent writers

Modifications at arbitrary offsets

Professor: SHRIDEEP PALLICKARA
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Block

Filesystems for a single disk, deal with data in blocks

Integral number of the HDD block size

Block sizes
Filesystem blocks are a few KB

Disk blocks are normally 512 bytes

Professor: SHRIDEEP PALLICKARA
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HDFS Blocks

Have a much larger size: 256 MB [default]

Files are broken into block-sized chunks

Each chunk is stored as an independent unit

If the last chunk is less than the HDFS block size?

No space is wasted because the blocks are themselves stored as files

Professor: SHRIDEEP PALLICKARA
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Why is the block-size so big?

Time to transfer data from disk can be made significantly larger than
the time to seek first block

If the seek time is 10 ms and transfer rate is 100 MB /sec?

To make seek time 1% of the transfer time, block size should be 100 MB

Must be careful not to overdo block size increase

Since tasks operate on blocks, the number of tasks could reduce.

Professor: SHRIDEEP PALLICKARA
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Benefits of the block abstraction in distributed file

systems
File can be larger than any single disk in the cluster

Simplifies the storage subsystem

File metadata (including permissions) handled by another subsystem and not
stored with the block

Professor: SHRIDEEP PALLICKARA
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Blocks and replication

Each block is replicated on a small number of physically separate
machines

If a block becomes unavailable?
(1) Copy read from another location transparently

(2) That block is also replicated from its alternative locations to other live
machines

Bring replication factor back to the desired level

Professor: SHRIDEEP PALLICKARA
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The contents of this slide set are based on the
following references

Tom White. Hadoop: The Definitive Guide. 3™ Edition. Early Access Release. O’Reilly
Press. ISBN: 978-1-449-31152-0. Chapters [2 and 3].
MapReduce Design Patterns: Building Effective Algorithms and Analytics for Hadoop

and Other Systems. 1°" Edition. Donald Miner and Adam Shook. O'Reilly Media ISBN:
978-1449327170. [Chapter 1-3]
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