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Trying to have your cake and eat it too
Each phase pines for  tasks with locality and their numbers on a tether
       Alas within a phase, you get one, but not the other

Who gets what?
   Stay tuned to find out
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Frequently asked questions from the previous class 
survey

¨ How does the runtime infer <key, values>? Shouldn’t the mapper do 
this?

¨ Can Hadoop be deployed on a per-user basis? Or, is it restricted to a 
per-machine basis?

¨ If each chunk is replicated 3 times, are you launching a mapper on all 
3?

¨ Is the combiner solely for optimization?
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Topics covered in today’s lecture

¨ Hadoop
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The code to run the MapReduce job

public class MaxTemperature {
   public static main(String[] args) throws Exception {
      Job job = Job.getInstance();
      job.setJarByClass(MaxTemperature.class);
      job.setJobName(“Max temperature”);

      FileInputFormat.addInputPath(job, new Path(args[0]));
      FileOutputFormat.setOutputPath(job, new Path(args[1]));

      job.setMapperClass(MaxTemperatureMapper.class);
      job.setReducerClass(MaxTemperatureReducer.class);

      job.setOutputKeyClass(Text.class);
      job.setOutputValueClass(IntWritable.class);

      System.exit(job.waitForCompletion(true) ? 0: 1);     
   }
}
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Details about the Job submission              [1/3]

¨ Code must be packaged in a JAR file for Hadoop to distribute over 
the cluster
¤ setJarByClass() causes Hadoop to locate relevant JAR file by looking 

for JAR that contains this class

¨ Data input and output paths must be specified next
¤ addInputPath() can be called more than once
¤ setOutputPath() specifies the output directory

n Directory should not exist before running the job

n Precaution to prevent data loss 
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Details about the Job submission               [2/3]

¨ The methods setOutputKeyClass() and setOutputValueClass()
¤ Control the output types of the map and reduce functions
¤ If they are different?

n Map output types can be set using setMapOutputKeyClass() and 
setMapOutputValueClass()
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Details about the Job submission.              [3/3]

¨ The waitforCompletion() method submits the job and waits for it 
to complete
¤ The boolean argument is a verbose flag; if set, progress information is 

printed on the console

¨ Return value of waitforCompletion() indicates success (true) or 
failure (false)
¤ In the example this is the program’s exit code 

(0 or 1) 
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The old and new MapReduce APIs

¨ The new API favors abstract classes over interfaces
¤ Make things easier to evolve 

¨ New API is in org.apache.hadoop.mapreduce package
¤ Old API can be found in org.apache.hadoop.mapred

¨ New API makes use of context objects
¤ Context unifies roles of JobConf, OutputCollector, and Reporter

from the old API
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The old and new MapReduce APIs

¨ In the new API, job control is done using the Job class rather than 
using the JobClient

¨ Output files are named slightly differently
¤ Old API:   Both map and reduce outputs are named part-nnnn
¤ New API:  Map outputs are named part-m-nnnn and reduce outputs are 

named part-r-nnnn
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The old and new MapReduce APIs

¨ The new API’s reduce() method passes values as Iterable rather 
than as Iterator
¤ Makes it easier to iterate over values using the for-each loop construct

for (VALUEIN value: values) {
    …
}
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Hadoop divides the input to a MapReduce job into 
fixed-sized pieces

¨ These are called input-splits or just splits

¨ Creates one map task per split
¤ Runs user-defined map function for each record in the split

13

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L25.14

Split strategy: Having many splits

¨ Time taken to process split is small compared to processing the whole 
input

¨ Quality of load balancing increases as splits become fine-grained
¤ Faster machines process proportionally more splits than slower machines
¤ Even if machines are identical, this feature is desirable

n Failed tasks get relaunched, and there are other jobs executing concurrently
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Split strategy: If the splits are too small

¨ Overheads for managing splits and map task creation dominates total 
job execution time

¨ Good split size tends to be an HDFS block
¤ This could be changed for a cluster or specified when each file is created
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Scheduling map tasks

¨ Hadoop does its best to run a map task on the node where input data 
resides in HDFS
¤ Data locality

¨ What if all three nodes holding the HDFS block replicas are busy?
¤ Find free map slot on node in the same rack
¤ Only when this is not possible, is an off-rack node utilized

n Inter-rack network transfer
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Why the optimal split size is the same as the block 
size …

¨ Largest size of input that can be stored on a single node

¨ If split size spanned two blocks?
¤ Unlikely that any HDFS node has stored both blocks

¤ Some of the split will have to be transferred across the network to node 
running the map task
n Less efficient than operating on local data without the network movement
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MANAGING OUTPUTS
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Map task outputs

¨ Stored on the local disk
¤ Not HDFS

¨ Once the job is complete, intermediate map outputs are thrown 
away
¤ Storing in HDFS with replication is an overkill
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Reduce tasks do not have the advantage of data 
locality

¨ Input to a single reduce task
¤ Output from all the mappers
¤ Sorted map outputs transferred over the network to node where reduce task 

is running
n Merged and then passed to the reduce function

¨ Output of reduce task stored on HDFS
¤ One replica of block is stored on local node, other replicas are stored on 

off-rack nodes
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Number of reduce tasks

¨ Not governed by the size of the input

¨ Specified independently
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When there are multiple reducers

¨ Maps partition their outputs
¤ One partition for each reduce task
¤ There can be many keys in each partition
¤ Records for a given key are all in the same partition

¨ Partitioning controlled with a partitioning function
¤ Default uses a hash function to bucket the key space
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MapReduce Dataflow

split 0 Map

Reduce Part 0

Merge
Copy

HDFS 
Replication

split 1 Map

split 2 Map

Reduce Part 1

Merge

HDFS 
Replication

Input HDFS

Output HDFS

Sort

Sort
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In Hadoop a Map task has 4 phases

¨ Record reader

¨ Mapper
¨ Combiner

¨ Partitioner
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Map task phases: Record Reader

¨ Translates input splits into records

¨ Parse data into records, but does not parse the record itself

¨ Passes the data to the mapper in the form of a key/value pair 
¤ key in this context is positional information
¤ value is the chunk of data that comprises a record
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Map task phases: Map

¨ User-provided code is executed on each key/value pair from the 
record reader 

¨ This user-code produces zero or more new key/value pairs, called the 
intermediate pairs
¤ key is what the data will be grouped on and value is the information 

pertinent to the analysis in the reducer

¤ Choice of key/value pairs is critical and not arbitrary
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Map task phases: Combiner

¨ Can group data in the map phase 

¨ Takes the intermediate keys from the mapper and applies a user-
provided method to aggregate values in the small scope of that one 
mapper

¨ Significantly reduces the amount of data that has to move over the 
network 
¤ Sending (“hello”, 3) requires fewer bytes than sending (“hello”, 1) three 

times over the network
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Map task phases: Partitioner                    [1/2]

¨ Takes the intermediate key/value pairs from the mapper (or combiner) 
and splits them up into shards, one shard per reducer

¨ Default: key.hashCode() % (number of reducers)
¤ Randomly distributes the keyspace evenly over the reducers
¤ But still ensures that keys with the same value in different mappers end up at 

the same reducer
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Map task phases: Partitioner                    [2/2]

¨ Partitioner can be customized (e.g., for sorting)
¤ Changing the partitioner is rarely necessary

¨ The partitioned data is written to the local file system for each map 
and waits to be pulled by its respective reducer
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In Hadoop a Reduce task has 4 phases

¨ Shuffle

¨ Sort
¨ Reducer

¨ Output format
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Reduce task phases: Shuffle and sort

¨ Shuffle
¤ Takes the output files written by all of the partitioners and downloads them 

to the local machine in which the reducer is running

¨ Sort
¤ Individual data pieces are then sorted by key into one larger data list 
¤ Groups equivalent keys together so that their values can be iterated over 

easily in the reduce task 
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Reduce task phases: Shuffle and sort

¨ This phase is not customizable and the framework handles everything 
automatically

¨ The only control a developer has is how the keys are sorted and 
grouped by specifying a custom Comparator object
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Reduce task phases: Reducer

¨ Takes the grouped data as input and runs a reduce function once per 
key grouping

¨ The function is passed the key and an iterator/iterable over all of the 
values associated with that key 
¤ A wide range of processing can happen in this function: data can be 

aggregated, filtered, and combined etc.

¨ Once the reduce function is done, it sends zero or more key/value 
pairs to the final step, the output format 

¨ N.B.: map & reduce functions will change from job to job
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Reduce task phases: Output format

¨ Translates the final key/value pair from the reduce function and writes 
it out to a file using a record writer

¨ By default:
¤ Separate the key and value with a tab 
¤ Separates records with a newline character 

¨ Can typically be customized to provide richer output formats

¤ But in the end, the data is written out to HDFS, regardless of format 
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Combiner functions

¨ Many MapReduce jobs are limited by the available network 
bandwidth
¤ Framework has mechanisms to minimize the data transferred between map 

and reduce tasks

¨ A combiner function is run on the map output
¤ Combiner output fed to the reduce task
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Combiner function

¨ No guarantees on how many times Hadoop will call this on a map 
output record
¤ The combiner should, however, result in the same output from the reducer

¨ Contract for the combiner constrains the type of function that can be 
used
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Combiner function: Let’s look at the maximum 
temperature example                                     [1/2]

(1950, 0)
(1950, 20)
(1950, 10)
Map 1

(1950, 25)
(1950, 15)
Map 2

(1950, 
[0, 20, 10, 25, 15]) Reduce (1950, 25)

39

HADOOPCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L25.40

Combiner function: Let’s look at the maximum 
temperature example                                     [2/2]

(1950, 0)
(1950, 20)
(1950, 10)
Map 1

(1950, 25)
(1950, 15)
Map 2

(1950, [20, 25]) Reduce (1950, 25)

Combiner

Combiner
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A closer look at the function calls

¨ max(0, 20, 10, 25, 15) =
max (max(0, 20, 10), max(25, 15)) =
max (20, 25) = 25

¨ Functions with this property are called commutative and associative
¤ Commutative: Order of operands (5+2) = (2 + 5) 

n Division and subtraction are not commutative

¤ Associative: Order of operators 5 x (5x3) = (5x5)x3
n Vector cross products are not
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Not all functions posses the commutative and 
associative properties

¨ What if we were computing the mean temperatures?

¨ We can cannot use mean as our combiner function

mean(0, 20, 10, 25, 15) = 14
BUT

mean(mean(0, 20, 10), mean(25, 15)) =
mean(10, 20) = 15
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Combiner: Summary

¨ The combiner does not replace the reduce function
¤ Reduce is still needed to process records from different maps

¨ But it is useful for cutting down traffic from maps to the reducer
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Specifying a combiner function
public class MaxTemperatureWithCombiner {

   public static main(String[] args) throws Exception {
      Job job = Job.getInstance();
      job.setJarByClass(MaxTemperature.class);
      job.setJobName(“Max temperature”);

      FileInputFormat.addInputPath(job, new Path(args[0]));
      FileOutputFormat.setOutputPath(job, new Path(args[1]));

      job.setMapperClass(MaxTemperatureMapper.class);
      job.setCombinerClass(MaxTemperatureReducer.class);
      job.setReducerClass(MaxTemperatureReducer.class);

      job.setOutputKey(Text.class);
      job.setOutputValueClass(IntWritable.class);

      System.exit(job.waitForCompletion(true) ? 0: 1);     

   }
}
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Another example with StackOverflow [1/2] 

¨ Given a list of user’s comment determine the average comment length 
per-hour

¨ To calculate average we need two things:
¤ Sum values that we want to average 
¤ Number of values that went into the sum
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Another example with StackOverflow [2/2] 

¨ Reducer can do this very easily by iterating through each value in the 
set and adding to a running sum while keeping count

¨ But if you do this you cannot use the reducer as your combiner!
¤ Calculating an average is not an associative operation

n You cannot change the order of the operators
n mean(0, 20, 10, 25, 15) = 14  BUT ..
n mean(mean(0, 20, 10), mean(25, 15)) = mean(10, 20) = 15
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Approach to ensuring code reuse at the combiner

¨ Mapper will output two columns of data
¤ Count and average

¨ Reducer will multiply “count” field by the “average” field to add to a 
running count     and add “count” to the running count
¤ Then divide the running sum with running count

n Output the count with the calculated average
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Mapper code
public static class AverageMapper extends 
    Mapper < Object, Text, IntWritable, CountAverageTuple > {

   private CountAverageTuple outCountAverage = new CountAverageTuple();
   public void map( Object key, Text value, Context context) 
      throws IOException, InterruptedException { 
     Map < String, String > parsed =  
            MRDPUtils.transformXmlToMap( value.toString()); 
     String strDate = parsed.get(" CreationDate"); 
     String text = parsed.get(" Text"); 
     // get the hour this comment was posted in 
     Date creationDate = frmt.parse( strDate); 
    outHour.set( creationDate.getHours()); 

    outCountAverage.setCount( 1); 
    outCountAverage.setAverage( text.length()); 

     // write out the hour with the comment length 
     context.write( outHour, outCountAverage); 
   } 
}
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Reducer code
public class AverageReducer extends Reducer < IntWritable, 
CountAverageTuple, IntWritable, CountAverageTuple > { 
    private CountAverageTuple result = new CountAverageTuple();

    public void 
    reduce(IntWritable key, Iterable < CountAverageTuple > values, 
        Context context) throws IOException, InterruptedException { 
       float sum = 0; float count = 0; 

       // Iterate through all input values for this key 
       for (CountAverageTuple val : values) { 
          sum + = val.getCount() * val.getAverage(); 
          count + = val.getCount(); 
       } 
       result.setCount( count); 
       result.setAverage( sum / count); 
       context.write( key, result); 
     } 
}
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Data flow for the average example

Hour Count Average

4 1 10

4 1 8

4 1 21

3 1 1

3 1 19

9 1 7

9 1 12
Hour Count Average

3 2 10

4 3 13

9 1 7

9 1 12

G
ro

up
 1

G
ro

up
 2

Setting:
Combiner executes over Groups 1 and 2
DOES NOT execute on the last two rows

Combiner Output/ Reducer Input

Input key Input Value

Output key Output Value
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Rationale

¨ Datasets often outgrow storage capacity of a single machine
¤ Necessary to partition data across multiple machines

¨ File systems managing storage access across a network of machines
¤ Distributed file systems
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HDFS is designed for storing …

¨ Very large files 
¤ File sizes are in the order of 100s of GB or a few TB

¨ With streaming data access patterns 
¤ Write-once, read many times pattern
¤ Each analysis involves a large portion of the dataset

n Time to read dataset is more important than latency for the first record

¨ On commodity hardware
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What is HDFS not suitable for?                 [1/2]

¨ Low-latency data access

¨ Lots of small files
¤ Name nodes holds file system metadata in memory
¤ Each file, directory and block takes about 150 bytes

n If there were 106 files each of which had 1 block
n 300 MB of memory

¤ Millions of files are feasible but not billions of files
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What is HDFS not suitable for?                 [2/2]

¨ Multiple writers, arbitrary file modifications

¨ HDFS does not support:
¤ Multiple concurrent writers
¤ Modifications at arbitrary offsets
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Block

¨ Filesystems for a single disk, deal with data in blocks
¤ Integral number of the HDD block size

¨ Block sizes
¤ Filesystem blocks are a few KB
¤ Disk blocks are normally 512 bytes 
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HDFS Blocks

¨ Have a much larger size: 256 MB [default]

¨ Files are broken into block-sized chunks
¤ Each chunk is stored as an independent unit

¨ If the last chunk is less than the HDFS block size?
¤ No space is wasted because the blocks are themselves stored as files
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Why is the block-size so big?

¨ Time to transfer data from disk can be made significantly larger than 
the time to seek first block

¨ If the seek time is 10 ms and transfer rate is 100 MB/sec?
¤ To make seek time 1% of the transfer time, block size should be 100 MB

¨ Must be careful not to overdo block size increase
¤ Since tasks operate on blocks, the number of tasks could reduce. 
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Benefits of the block abstraction in distributed file 
systems

¨ File can be larger than any single disk in the cluster

¨ Simplifies the storage subsystem
¤ File metadata (including permissions) handled by another subsystem and not 

stored with the block
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Blocks and replication

¨ Each block is replicated on a small number of physically separate
machines

¨ If a block becomes unavailable?
① Copy read from another location transparently
② That block is also replicated from its alternative locations to other live 

machines
n Bring replication factor back to the desired level
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The contents of this slide set are based on the 
following references
¨ Tom White. Hadoop: The Definitive Guide. 3rd Edition. Early Access Release. O’Reilly 

Press. ISBN: 978-1-449-31152-0. Chapters [2 and 3]. 

¨ MapReduce Design Patterns: Building Effective Algorithms and Analytics for Hadoop 
and Other Systems. 1st Edition. Donald Miner and Adam Shook. O'Reilly Media ISBN: 
978-1449327170.  [Chapter 1-3]
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