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Why data writes matter …
A write is performed once 
    But a read?    occurs many times (over)
The writes are a harbinger
    of subsequent resource utilizations
and how fast 
     analytics lead to insights 
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Frequently asked questions from the previous class 
survey

¨ How are files accessed if the namenode only contains metadata?
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Topics covered in today’s lecture

¨ HDFS
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File writes

¨ We will look at creating a new file and writing data to it

¨ File creation is done using create() on 
DistributedFileSystem

¨ DistributedFileSystem does an RPC to the namenode
¤ Namenode checks existence of file and permissions
¤ Creates file in the filesystem’s namespace with no blocks in it
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Data flow in HDFS  [writes]
HDFS 
Client

Distributed 
File System

FSData
OutputStream

NameNode

DataNode DataNode DataNode

1: create
2: create

3: write

4: write packet 5: ack packet

6:close

Client JVM

namenode

datanode datanode datanode

client node
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Anatomy of a file write

¨ DistributedFileSystem returns an FSDataOutputStream
for client to write data to

¨ FSDataOutputStream wraps a DFSOutputStream
¤ DFSOutputStream handles communications with the datanodes and the 

namenode
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As the client writes data …

¨ DFSOutputStream splits it into packets
¤ Written to an internal queue, the data queue

¨ Data queue is consumed by the DataStreamer

¨ DataStreamer asks namenode to allocate new blocks
¤ Pick list of suitable datanodes to store replicas
¤ List of datanodes forms a pipeline
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Assuming a replication level of 3

¨ DataStreamer streams packets to the first datanode in the pipeline
¤ 1st datanode stores the packet and forwards it to the 2nd datanode in 

pipeline

¨ The second datanode stores the packet and forwards it to the 3rd (and 
last) datanode in pipeline
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Managing acknowledgements

¨ DFSOutputStream maintains an internal queue of packets waiting 
to be ACKed by datanodes
¤ This is the ack queue

¨ When is a packet removed from the ACK queue?
¤ Only when it has been acknowledged by all the datanodes in the pipeline
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Handling datanode failures during writes         [1/2]

¨ The pipeline is closed

¨ Current block on good datanodes is given a new identity
¤ Allows partial block on failed node to be deleted if that datanode recovers 

later on
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Handling datanode failures during writes         [2/2]

¨ Failed datanode is removed from the pipeline

¨ Remainder of the block’s data is written to the two good datanodes in 
the pipeline

¨ Namenode notices block is under-replicated
¤ Arranges for replicas to be created on another node

¨ Subsequent blocks are treated as normal
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It is possible that multiple datanodes fail while a 
block is being written

¨ As long as dfs.replication.min (default 1) replicas are written, 
the write will succeed

¨ Block is asynchronously replicated across cluster until its target 
replication factor is reached
¤ dfs.replication (default 3)
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When a client has finished writing data

¨ It calls close() on the stream

¨ Flushes all remaining packets to the datanode pipeline
¤ Wait for acknowledgements before contacting the  namenode to signal that 

file is complete

¨ Namenode knows about blocks that comprise the file
¤ DataStreamer requests block allocations
¤ Client only waits for blocks to be minimally replicated
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Replica placement                                  [1/2]

¨ Trade-off between reliability, read bandwidth, and write bandwidth

¨ Placing all replicas on a single node?
¤ Lowest write bandwidth penalty since replication pipeline runs on a single 

node
¤ Offers no redundancy
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Replica placement                                  [2/2]

¨ Read bandwidth is high for off-rack reads

¨ Placing replicas in different data centers
¤ Maximizes redundancy at the the cost of bandwidth
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Default replication strategy in Hadoop

¨ Place first replica on the same node as the client
¤ If client runs outside the cluster, 1st node is chosen at random

¨ The second replica is placed on a different rack from the first  
¤ Chosen at random

¨ Third replica is placed on the same rack as the second
¤ Different node is chosen at random

¨ Further replicas are placed on random nodes in the cluster
¤ Avoid placing too many replicas on the same rack

18



SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.10

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HDFSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.19

Default strategy balances

¨ Reliability
¤ Blocks are stored on different racks

¨ Write bandwidth
¤ Writes traverse a single network switch

¨ Read bandwidth
¤ Choice of two racks to read from

¨ Block distribution across cluster
¤ Clients write a single block on the local rack
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Once the replica locations have been chosen

¨ A pipeline is built 

¨ Pipeline takes network topology into account
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A quick look at assertThat in JUnit

¨ Format
§ assertThat([value], [matcher statement]);

¨ Examples
§ assertThat(x, is(3));

§ assertThat(x, is(not(4)));

§ assertThat(responseString, 
either(containsString("color")).or(containsString("colour")));

§ assertThat(myList, hasItem("3"));
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Assertion syntax

¨ Readable

¨ Think in terms of subject, verb, and object
¤ Assert “x is 3”

¨ Matcher statements can be negated, combined, or mapped to a 
collection
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Coherency Model

¨ For a filesystem, coherency describes data visibility of reads and 
writes to a file

¨ HDFS trades-off some POSIX requirements for performance
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Creation of a file

¨ After creation, it is visible in the file namespace

Path p = new Path("p");
fs.create(p);
assertThat(fs.exists(p), is(true));
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Contents written to the newly created file

¨ Not guaranteed to be visible

¨ Even if the stream is flushed
¤ File may appear to have length of 0

Path p = new Path("p");
OutputStream out = fs.create(p);
out.write("content".getBytes("UTF-8"));
out.flush();
assertThat(fs.getFileStatus(p).getLen(), is(0L));
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Visibility of blocks during writes

¨ Once more than a block of data is written?
¤ The first block is visible

¨ In general, the current block that is being written to is not visible to 
other readers
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The HDFS sync method

¨ Forces all buffers to be synchronized to the datanodes

¨ After sync() returns successfully?
¤ All data written up to that point in the file is persisted and visible to all 

clients
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When to call sync()

¨ With no calls to sync()
¤ Possible to lose up to a block of data due to client or system failure

¨ However, invocations of sync() do have overheads
¤ Trade-off between data robustness and throughput

¨ Frequency of sync() is application dependent
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Parallel copying with distcp

¨ Enables copying large amounts of data to and from the Hadoop 
filesystem in parallel

% hadoop distcp hdfs://namenode1/foo hdfs://namenode2/bar
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distcp is implemented as a MapReduce job

¨ Copying is done by Maps that run in parallel across the cluster
¤ There are no reducers

¨ Deciding the number of maps
¤ Give each map sufficient data to minimize overheads during task setup

¤ This is specified using the –m argument to distcp
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Keeping an HDFS cluster balanced

¨ HDFS works best when file blocks are evenly spread across the cluster

¨ We need to ensure that distcp does not disrupt this feature

¨ If we are transferring 1000 GB?
¤ Specifying –m 1 would mean that a single map would do the copy

n Will be slow
n The first replica of each block would reside on the node running map (till the disk 

fills up)  

33

COMPUTER SCIENCE DEPARTMENT

DATA INTEGRITY

34



SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.18

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HDFSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.35

Data Integrity

¨ I/O operations on disk or network carry a small chance of introducing 
errors 

¨ With voluminous data movements the chances of data corruption 
become high

¨ Checksums
¤ Data is corrupt if there is a mismatch between the original and the newly 

computed checksum
¤ There is also a small chance that the checksum is corrupt
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Data integrity in HDFS

¨ Datanodes are responsible for verifying received data before storing 
the data and checksum

¨ When clients read data from the datanode,  they verify the checksum
¤ Compare with checksum stored at the datanode
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DataBlockScanner

¨ Each datanode runs a DataBlockScanner in the background 
periodically

¨ Verifies all blocks stored on the datanode

¨ Guards against corruption due to bit rot in the physical storage media
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Dealing with corrupted data blocks

¨ Heal corrupted blocks 
¤ By copying one of the good replicas to produce a new, uncorrupt replica

¨ When a client detects an error while reading block?
¤ Report both the bad block and datanode it was reading from
¤ Throw ChecksumException
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Dealing with corrupted data blocks

¨ Namenode marks the block replica as corrupt
¤ Does not direct clients to it
¤ Does not try to copy replica to another datanode

¨ Schedules a copy of the block to be replicated on another datanode
¤ Restore replication level for the block

¨ Corrupt replica is then deleted
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Disabling checksum

¨ Useful if you have a corrupt file that you would like to inspect

¨ Pass false to verifyChecksum() on FileSystem before using 
open() to read the file

¨ From the shell, use the –ignoreCrc option with the –get or the –copyToLocal
command
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Client side checksumming

¨ Done by the Hadoop LocalFileSystem

¨ When you write a file filename
¤ The filesystem client creates a hidden file .filename.crc in the same directory
¤ Contains checksums for each chunk of the file

n Chunk size is stored in the .crc file

¨ Disable checksums when underlying filesystem supports this natively
¤ Use RawLocalFileSystem instead of LocalFileSystem
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Compression

¨ Reduces space needed to store files

¨ Speeds up data transfers
¤ Across network
¤ Disk I/O
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Compression formats that can be used with Hadoop

Compression 
format 

Tool Algorithm Filename
extension

Splittable?

DEFLATE N/A DEFLATE .deflate No

Gzip Gzip DEFLATE .gz No

Bzip2 Bzip2 Bzip2 .bz2 Yes

LZO Lzop LZO .lzo No*

Snappy N/A Snappy .snappy No

Pigeonhole principle
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Compression Algorithms 

¨ Exhibit a space-time trade-off
¤ Faster compression/decompression speeds usually result in smaller space 

savings

¨ Tools give some control over this trade-off at compression time
§ 9 different options
§ -1 means optimize for speed
§ -9 means optimize for space
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Compression characteristics

¨ gzip is a general purpose compressor
¤ Middle of the space/time trade-off

¨ bzip2 compresses more effectively than gzip
¤ But it is slower
¤ bzip2 decompression speed is faster than its compression speed

n But slower than other formats still

¨ LZO and Snappy optimize for speed
¤ Order of magnitude faster but less effective compression than gzip
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A codec is the implementation of a compression-
decompression algorithm in Hadoop

Compression 
format 

Hadoop CompressionCodec

DEFLATE org.apache.hadoop.io.compress.DefaultCodec

gzip org.apache.hadoop.io.compress.GzipCodec

bzip2 org.apache.hadoop.io.compress.BZip2Codec

LZO com.hadoop.compression.lzo.LzopCodec

Snappy org.apache.hadoop.io.compress.SnappyCodec
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CompressionCodec

¨ To compress data being written to an output stream
§ Use codec.createOutputStream(OutputStream out)

¨ To decompress data being read from an input stream
§ Use codec.createInputStream(InputStream in)
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Using compression

public class StreamCompressor {

     public static void main(String[] args) throws Exception {
        String codecClassname = args[0];
        Class<?> codecClass = Class.forName(codecClassname);
        Configuration conf = new Configuration();
        CompressionCodec codec = (CompressionCodec)
          ReflectionUtils.newInstance(codecClass, conf);
        CompressionOutputStream out = 
             codec.createOutputStream(System.out);
        IOUtils.copyBytes(System.in, out, 4096, false);
        out.finish();
     }
}

Compresses data read from standard input and writes it to standard output 
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Compression and input splits

¨ Let’s look at an uncompressed file stored in HDFS
¤ With an HFDS block size of 64 MB, a 1 GB file is stored as 16 blocks

¤ MapReduce job will create 16 input splits
n Processed independently as separate map tasks
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If the gzip compressed file is 1 GB

¨ HDFS stores files as 16 blocks

¨ Creating a split for each block does not work
¤ Impossible to start reading at an arbitrary block in the zip stream
¤ Impossible for map task to read its split independently of others
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Storing gzipped streams

¨ Gzip uses DEFLATE, which stores data as a series of compressed blocks

¨ The start of each block is not distinguished in a way that allows: 
¤ Reader positioned at arbitrary point in stream to advance to the beginning 

of the next block
n There is no self-synchronizing with the stream

¤ Gzip does not support splitting
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HDFS does not split gzip files

¨ Single map will process 16 HDFS blocks

¨ Most of these blocks will not be local to the map
¤ Loss of locality
¤ Job is not granular … takes much longer to run
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The same story plays out if you were dealing with 
LZO files, but …

¨ It is possible to preprocess LZO files using an indexer tool

¨ Build an index of split points
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Bzip2

¨ This does provide a synchronization marker between blocks
¤ 48-bit approximation of pi

¨ The marker is used to support splitting
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Dealing with large, unbounded files [Log files]

① Store the files uncompressed

② Use compression format that supports
¤ Splitting: Bzip2
¤ Indexing to support splitting: LZO

③ Split the file into chunks in the application and compress each chunk 
separately

¤ Choose chunk sizes such that the compressed chunks are approximately the 
size of an HDFS block
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Using compression in MapReduce

¨ To compress the output of MapReduce job
¤ In the job config set mapred.output.compress property to true
¤ Use mapred.output.compression.codec to specify the codec

¨ Alternatively, we can do this using the FileOutputFormat
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Using the FileOutputFormat
public class MaxTemperatureWithCompression {

   public static void main(String[] args) throws Exception {
   Job job = Job.getInstance();

job.setJarByClass(MaxTemperature.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

FileOutputFormat.setCompressOutput(job, true);
FileOutputFormat.setOutputCompressorClass(job, GzipCodec.class);

job.setMapperClass(MaxTemperatureMapper.class);
job.setCombinerClass(MaxTemperatureReducer.class);
job.setReducerClass(MaxTemperatureReducer.class);
System.exit(job.waitForCompletion(true) ? 0 : 1);

   }

}
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Main reason why Hadoop does not use Java 
Serialization

¨ Deserialization creates new instance of each object being deserialized

¨ Writable objects can be (and are often) reused

¨ Large MapReduce jobs often serialize/deserialize billions of records 
¤ Savings from not having to allocate new objects is significant
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The contents of this slide set are based on the 
following references
¨ Tom White. Hadoop: The Definitive Guide. 3rd Edition. O’Reilly Press. ISBN: 978-1-

449-31152-0. Chapters [3 and 4].

¨ JUnit release notes for version 4.4 available at 
http://junit.sourceforge.net/doc/ReleaseNotes4.4.html 

60


