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CSx55: DISTRIBUTED SYSTEMS [HDFS]

Why data writes matter ...
A write is performed once

But a read? occurs many times (over)
The writes are a harbinger

of subsequent resource utilizations

and how fast Shrideep Pallickara
analytics lead to insights
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Frequently asked questions from the previous class
survey

How are files accessed if the namenode only contains metadata?
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Topics covered in today’s lecture
(e
HDFS
COLORADO STATE UNIVERSITY  Gormoren Soience Deparvent  HDFS L28.3
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File writes

We will look at creating a new file and writing data to it

File creation is done using create () on
DistributedFileSystem

DistributedFileSystem does an RPC to the namenode
Namenode checks existence of file and permissions

Creates file in the filesystem’s namespace with no blocks in it

Professor: SHRIDEEP PALLICKARA
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Data flow in HDFS [writes]
e 1: create
S Distributed 2: create
_ Client "\ 3: write File System | ‘ —>iNameNode
6:close namenode
FSData
OutputStream
Client JVM
client node
4: write packet 5: ack packet
J 4 4
DataNode .~ DataNode __ 2 DataNode
———— 5 ———
datanode datanode datanode
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Anatomy of a file write

DistributedFileSystemreturns an FSDataOutputStream
for client to write data to

FSDataOutputStream wraps a DESOutputStream

DFSOutputStream handles communications with the datanodes and the
namenode

Professor: SHRIDEEP PALLICKARA HDFS
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As the client writes data ...

DEFSOutputStream splits it into packets

Written to an internal queue, the data queue
Data queue is consumed by the DataStreamer

DataStreamer asks namenode to allocate new blocks
Pick list of suitable datanodes to store replicas

List of datanodes forms a pipeline

Professor: SHRIDEEP PALLICKARA
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Assuming a replication level of 3

DataStreamer streams packets to the first datanode in the pipeline

1%t datanode stores the packet and forwards it to the 2" datanode in
pipeline

The second datanode stores the packet and forwards it to the 3" (and
last) datanode in pipeline

Professor: SHRIDEEP PALLICKARA HDFS
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Managing acknowledgements

DFSOutputStream maintains an internal queue of packets waiting
to be ACKed by datanodes

This is the ack queue

When is a packet removed from the ACK queue?
Only when it has been acknowledged by all the datanodes in the pipeline

Prof : SHRIDEEP PALLICKARA
rofessor: § Cl HDFS
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Handling datanode failures during writes [1/2]

The pipeline is closed

Current block on good datanodes is given a new identity

Allows partial block on failed node to be deleted if that datanode recovers

later on

Professor: SHRIDEEP PALLICKARA
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Handling datanode failures during writes [2/2]

Failed datanode is removed from the pipeline

Remainder of the block’s data is written to the two good datanodes in

the pipeline

Namenode notices block is under-replicated

Arranges for replicas to be created on another node

Subsequent blocks are treated as normal

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.12

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.6



CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

It is possible that multiple datanodes fail while a
block is being written

As long as dfs.replication.min (default 1) replicas are written,
the write will succeed

Block is asynchronously replicated across cluster until its target
replication factor is reached

dfs.replication (default 3)

Professor: SHRIDEEP PALLICKARA
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When a client has finished writing data

It calls close () on the stream

Flushes all remaining packets to the datanode pipeline
Wait for acknowledgements before contacting the namenode to signal that
file is complete

Namenode knows about blocks that comprise the file

DataStreamer requests block allocations

Client only waits for blocks to be minimally replicated

Professor: SHRIDEEP PALLICKARA
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REPLICA PLACEMENTS

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY
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Replica placement [1/2]

Trade-off between reliability, read bandwidth, and write bandwidth

Placing all replicas on a single node?

Lowest write bandwidth penalty since replication pipeline runs on a single
node

Offers no redundancy

Professor: SHRIDEEP PALLICKARA
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Replica placement [2/2]

Read bandwidth is high for off-rack reads

Placing replicas in different data centers

Maximizes redundancy at the the cost of bandwidth

Professor: SHRIDEEP PALLICKARA HDFS
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Default replication strategy in Hadoop

Place first replica on the same node as the client

If client runs outside the cluster, 15 node is chosen at random

The second replica is placed on a different rack from the first

Chosen at random

Third replica is placed on the same rack as the second

Different node is chosen at random

Further replicas are placed on random nodes in the cluster

Avoid placing too many replicas on the same rack

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.18
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Default strategy balances

Reliability
Blocks are stored on different racks

Write bandwidth

Writes traverse a single network switch
Read bandwidth
Choice of two racks to read from

Block distribution across cluster

Clients write a single block on the local rack

Professor: SHRIDEEP PALLICKARA HDFS
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Once the replica locations have been chosen

A pipeline is built

Pipeline takes network topology into account

Prof : SHRIDEEP PALLICKARA
rofessor: § Cl HDFS
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COHERENCY MODEL

A quick look at assertThat in JUnit

1 Format
assertThat([value], [matcher statement]);

0 Examples
assertThat (x, is(3));
assertThat (x, is(not(4))):;

assertThat (responseString,

either (containsString("color")) .or (containsString("colouxr")));

assertThat (myList, hasItem("3"));

Professor: SHRIDEEP PALLICKARA
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Assertion syntax

Readable

Think in terms of subject, verb, and object

Assert “x is 3”

Matcher statements can be negated, combined, or mapped to a
collection

Professor: SHRIDEEP PALLICKARA HDFS
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Coherency Model
For a filesystem, coherency describes data visibility of reads and
writes to a file

HDFS trades-off some POSIX requirements for performance

Prof : SHRIDEEP PALLICKARA
rofessor: § Cl HDFS
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Creation of a file

After creation, it is visible in the file namespace

Path p = new Path("p");
fs.create(p);
assertThat(fs.exists(p), is(true));

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY  CopmpyteR SCIENCE DEPARTMENT HDFS L28.25
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Contents written to the newly created file

Not guaranteed to be visible

Even if the stream is flushed

File may appear to have length of @

Path p = new Path("p™);

OutputStream out = fs.create(p);
out.write("content".getBytes("UTF-8"));
out.flushQ);
assertThat(fs.getFileStatus(p).getlLen(), is(OL));

Professor: SHRIDEEP PALLICKARA
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Visibility of blocks during writes

Once more than a block of data is written?2
The first block is visible

In general, the current block that is being written to is not visible to

other readers

COLORADD STATE UNIVERSITY (s S B HOFS
27
The HDFS sync method
Forces all buffers to be synchronized to the datanodes
After sync () returns successfully?
All data written up to that point in the file is persisted and visible to all
clients
COLORADD STATE UNIVERSITY  (arescr S Pt wwrvent  HDFS 128.28
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When to call sync ()

With no calls to sync ()

Possible to lose up to a block of data due to client or system failure

However, invocations of sync () do have overheads

Trade-off between data robustness and throughput

Frequency of sync () is application dependent

Professor: SHRIDEEP PALLICKARA
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PARALLEL COPYING
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Parallel copying with distcp

Enables copying large amounts of data to and from the Hadoop
filesystem in parallel

% hadoop distcp hdfs://namenodel/foo hdfs://namenode2/bar

Professor: SHRIDEEP PALLICKARA HDFS
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distcp is implemented as a MapReduce job

Copying is done by Maps that run in parallel across the cluster

There are no reducers

Deciding the number of maps
Give each map sufficient data to minimize overheads during task setup

This is specified using the —m argument to distcp

Prof : SHRIDEEP PALLICKARA
rofessor: § Cl HDFS
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Keeping an HDFS cluster balanced

HDFS works best when file blocks are evenly spread across the cluster
We need to ensure that distcp does not disrupt this feature

If we are transferring 1000 GB?

Specifying -m 1 would mean that a single map would do the copy
Will be slow

The first replica of each block would reside on the node running map (till the disk

fills up)
Professor: SHRIDEEP PALLICKARA
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Data Integrity

|/O operations on disk or network carry a small chance of introducing
errors

With voluminous data movements the chances of data corruption
become high

Checksums

Data is corrupt if there is a mismatch between the original and the newly
computed checksum

There is also a small chance that the checksum is corrupt

Professor: SHRIDEEP PALLICKARA HDFS
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Data integrity in HDFS

Datanodes are responsible for verifying received data before storing
the data and checksum

When clients read data from the datanode, they verify the checksum

Compare with checksum stored at the datanode

Prof : SHRIDEEP PALLICKARA
rofessor: § Cl HDFS
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DataBlockScanner

Each datanode runs a DataBlockScanner in the background
periodically

Verifies all blocks stored on the datanode

Guards against corruption due to bit rot in the physical storage media

Professor: SHRIDEEP PALLICKARA
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Dealing with corrupted data blocks

Heal corrupted blocks

By copying one of the good replicas to produce a new, uncorrupt replica

When a client detects an error while reading block?
Report both the bad block and datanode it was reading from

Throw ChecksumException

Professor: SHRIDEEP PALLICKARA
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Dealing with corrupted data blocks

Namenode marks the block replica as corrupt
Does not direct clients to it

Does not try to copy replica to another datanode

Schedules a copy of the block to be replicated on another datanode

Restore replication level for the block

Corrupt replica is then deleted

Professor: SHRIDEEP PALLICKARA
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Disabling checksum

Useful if you have a corrupt file that you would like to inspect

Pass false to verifyChecksum() on FileSystem before using
open () to read the file

From the shell, use the —ignoreCrc option with the —get or the —copyTolLocal
command

Professor: SHRIDEEP PALLICKARA
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Client side checksumming

Done by the Hadoop LocalFileSystem

When you write a file filename
The filesystem client creates a hidden file .filename.crc in the same directory

Contains checksums for each chunk of the file

Chunk size is stored in the .crc file

Disable checksums when underlying filesystem supports this natively

Use RawLocalFileSystem instead of LocalFileSystem

Professor: SHRIDEEP PALLICKARA
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Compression

Reduces space needed to store files

Speeds up data transfers

Across network

Disk 1/O
COLORADD STATE UNIVERSITY (it Somt bbnrneer  HOFS
43
Compression formats that can be used with Hadoop
Compression  Tool Algorithm  Filename Splittable?
format extension
DEFLATE N/A DEFLATE .deflate No
Gzip Gzip DEFLATE gz No
Bzip2 Bzip2 Bzip2 .bz2 Yes
LZO Lzop LZO zo No*
Snappy N/A Snappy .snappy No
; Pigeonhole principle
@S
COLORADD STATE UNIVERSITY  (arescr S Pt wwrvent  HDFS L28.44
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Compression Algorithms

Exhibit a space-time trade-off

Faster compression/decompression speeds usually result in smaller space
savings

Tools give some control over this trade-off at compression time
9 different options
-1 means optimize for speed

-9 means optimize for space

Professor: SHRIDEEP PALLICKARA
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Compression characteristics

gzip is a general purpose compressor
Middle of the space/time trade-off

bzip2 compresses more effectively than gzip
But it is slower

bzip2 decompression speed is faster than its compression speed

But slower than other formats still

LZO and Snappy optimize for speed

Order of magnitude faster but less effective compression than gzip

Professor: SHRIDEEP PALLICKARA
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A codec is the implementation of a compression-
decompression algorithm in Hadoop
Compression Hadoop CompressionCodec
format
DEFLATE org.apache.hadoop.io.compress.DefaultCodec
gzip org.apache.hadoop.io.compress.GzipCodec
bzipZ org.apache.hadoop.io.compress.BZip2Codec
LZO com.hadoop.compression.lzo.LzopCodec
Snappy org.apache.hadoop.io.compress.SnappyCodec
COLORADO STATE UNIVERSITY  Gormoren Soience Deparvent  HDFS L28.47
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CompressionCodec
To compress data being written to an output stream
Use codec.createOutputStream (OutputStream out)
To decompress data being read from an input stream
Use codec.createInputStream (InputStream in)
COLORADD STATE UNIVERSITY  (arescr S Pt wwrvent  HDFS L28.48
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Using compression

public class StreamCompressor {

public static void main(String[] args) throws Exception {
String codecClassname = args[@];
Class<?> codecClass = Class.forName(codecClassname);
Configuration conf = new Configuration();
CompressionCodec codec = (CompressionCodec)
ReflectionUtils.newInstance(codecClass, conf);
CompressionOutputStream out =
codec.createOutputStream(System.out);
I0Utils.copyBytes(System.in, out, 4096, false);
out.finish(Q);

}
}
Compresses data read from standard input and writes it to standard output
COLORADO STATE UNIVERSITY  Gormoren Soience Deparvent  HDFS 128.49
49
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Compression and input splits
Let’s look at an uncompressed file stored in HDFS
With an HFDS block size of 64 MB, a 1 GB file is stored as 16 blocks
MapReduce job will create 16 input splits
Processed independently as separate map tasks
COLORADD STATE UNIVERSITY  (arescr S Pt wwrvent  HDFS L28.50
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If the gzip compressed file is 1 GB

HDFS stores files as 16 blocks

Creating a split for each block does not work
Impossible to start reading at an arbitrary block in the zip stream

Impossible for map task to read its split independently of others

Professor: SHRIDEEP PALLICKARA
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Storing gzipped streams

Gzip uses DEFLATE, which stores data as a series of compressed blocks

The start of each block is not distinguished in a way that allows:

Reader positioned at arbitrary point in stream to advance to the beginning
of the next block

There is no self-synchronizing with the stream

Gzip does not support splitting

Professor: SHRIDEEP PALLICKARA
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HDFS does not split gzip files

Single map will process 16 HDFS blocks

Most of these blocks will not be local to the map
Loss of locality

Job is not granular ... takes much longer to run

Professor: SHRIDEEP PALLICKARA HDFS
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The same story plays out if you were dealing with
LZO files, but ...

It is possible to preprocess LZO files using an indexer tool

Build an index of split points

Prof : SHRIDEEP PALLICKARA
rofessor: § Cl HDFS
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Bzip2

This does provide a synchronization marker between blocks

48-bit approximation of pi

The marker is used to support splitting

Professor: SHRIDEEP PALLICKARA
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Dealing with large, unbounded files [Log files]

(1) Store the files uncompressed

(2) Use compression format that supports
Splitting: Bzip2
Indexing to support splitting: LZO

(3) Split the file into chunks in the application and compress each chunk
separately
Choose chunk sizes such that the compressed chunks are approximately the
size of an HDFS block

Professor: SHRIDEEP PALLICKARA
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Using compression in MapReduce

To compress the output of MapReduce job
In the job config set mapred.output.compress property to true
Use mapred.output.compression.codec to specify the codec

Alternatively, we can do this using the FileOutputFormat

Professor: SHRIDEEP PALLICKARA
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Using the FileOutputFormat

public class MaxTemperatureWithCompression {

public static void main(String[] args) throws Exception {
Job job = Job.getInstance();
job.setJarByClass(MaxTemperature.class);
FileInputFormat.addInputPath(job, new Path(args[@]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

FileOutputFormat.setCompressQutput(job, true);
FileOutputFormat.setOutputCompressorClass(job, GzipCodec.class);

job.setMapperClass(MaxTemperatureMapper.class);
job.setCombinerClass(MaxTemperatureReducer.class);

job.setReducerClass(MaxTemperatureReducer.class);
System.exit(job.waitForCompletion(true) 7 0 : 1);

}
Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT HDFS L28.58

58

SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.29



CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Main reason why Hadoop does not use Java
Serialization

Deserialization creates new instance of each object being deserialized

Writable objects can be (and are often) reused

Large MapReduce jobs often serialize /deserialize billions of records

Savings from not having to allocate new obijects is significant

Professor: SHRIDEEP PALLICKARA
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The contents of this slide set are based on the
following references

Tom White. Hadoop: The Definitive Guide. 3™ Edition. O’Reilly Press. ISBN: 978-1-
449-31152-0. Chapters [3 and 4].

JUnit release notes for version 4.4 available at
http: / /junit.sourceforge.net/doc/ReleaseNotes4.4.html
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