CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

CSx55: DISTRIBUTED SYSTEMS [THREADS]

The House of Heap and Stacks
Stacks clean up after themselves
But over deep recursions they fret

The cheerful heap has nary a care
Harboring memory leaks, hurtling to a crash

Shrideep Pallickara

Computer Science
Colorado State University

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

Frequently asked questions from the previous class
survey

What'’s an induced liveness stall?

What is the state that is individual to each thread?
Execution pipelines and their relation to the ALU
Thread vs. Processes: page faults

Asynchronous 1 /O

Bytecode compiling a separate Java thread

Program blocking, heaps, program counter

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.2

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.1

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Topics covered in this lecture

Threads

Thread Creation
Heaps and Stacks
Thread Lifecycle

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS L33

3

Thread Abstraction

A thread is a single execution sequence that represents a separately
schedulable task

Single execution sequence
Each thread executes sequence of instructions — assignments, conditionals, loops,

procedures, etc. — just as the sequential programming model

Separately schedulable task

The OS can run, suspend, or resume a thread at any time

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.4

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.2

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD CREATION

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

Thread creation

Using the Thread class

Using the Runnable interface

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.6

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.3

CSx55: Distributed Systems

Dept. Of Computer Science, Colorado State University

The Thread class

public
public
public
public
public
public
public

public

public
public

}

package java.lang;

public class Thread implements Runnable {

Thread () ;

Thread (Runnable target) ;
Thread (ThreadGroup group,
Thread (String name) ;
Thread (ThreadGroup group,

Thread (Runnable target, String name) ;

Thread (ThreadGroup group,
String name) ;
Thread (ThreadGroup group,

String name, long stackSize);

void start();
void run () ;

Runnable target);
String name) ;
Runnable target,

Runnable target,

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY CompuTER SCIENCE DEPARTMENT

THREADS L3.7

7

Thread name

Runnable target

Thread group

Stack size

Default is Thread-N; N is a unique number

List of instructions that the thread executes
Default: run () method of the thread itself

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

Threads require 4 pieces of information

A thread is assigned to the thread group of the thread that calls the constructor

Store temporary variables during method execution
Platform-dependent: range of legal values, optimal value, etc.

THREADS L3.8

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L3.4

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

A simple thread

private Random random;
private int nextNumber;
public RandomGen () {random =

public void run() {

return;

}
}

}

public class RandomGen extends Thread {

for (;;) |
nextNumber = random.nextInt () ;
try {

} catch (InterruptedException ie) {

new Random() ;}

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS L3.9
9
About the code snippet
Extends the Thread class
Actual instructions we want to execute is in the run () method
Standard method of the Thread class
Place where Thread begins execution
Professor: SHRIDEEP PALLICKARA THREADS 13.10

COLORADO STATE UNIVERSITY CompuTeER SCIENCE DEPARTMENT

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L3.5

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Contrasting the run () and main () methods

main () method

This is where the first thread starts executing

The main thread

The run () method

Subsequent threads start executing with this method

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS L3.1

11

THREADS AND ...
HEAPS AND STACKS

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.6

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Threads and heaps

For performance reasons, heaps may internally subdivide their space into
per-thread regions

Threads can allocate objects at the same time without interfering with each other
By allocating objects used by the same thread from the same memory region?
Cache hit rates may improve
Each subdivision of the heap has thread-local variables

Track parts of thread-local heap in use, those that are free, etc.

New memory allocations (malloc () and new ()) can take memory from
shared heap, only if local heap is used up

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS L3.13

13

How big a stack? [1/2]

The size of the stack must be large enough to accommodate the
deepest nesting level needed during the thread’s lifetime

Kernel threads
Kernel stacks are allocated in physical memory

The nesting depth for kernel threads tends to be small

E.g., 8KB default in Linux on an Intel x86

Buffers and data structures are allocated on the heap and never as
procedure local variables

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.14

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.7

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

How big a stack? [2/2]

B
01 User-level stacks are allocated in virtual memory

01 To catch program errors
o Most OS will trigger error if the program stack grows too large too quickly
¥ Indication of an unbounded recursion
o Google’s GO will automatically grow the stack as needed ... this is very
uncommon

o POSIX, for e.g., allows default stack size to be library dependent (e.g.
larger on a desktop, smaller on a phone)

u “Exceeding default stack limit is very easy to do, with the usual results”
= Program termination

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS L3.15

15

THREAD LIFECYCLE

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L3.8

CSx55: Distributed Systems

Dept. Of Computer Science, Colorado State University

1 Creation
1 Starting

01 Terminating

Lifecycle of a thread

1 Pausing, suspending, and resuming

Professor: SHRIDEEP PALLICKARA

CULURADD STATE UNIVERSITY GoupyTER SCIENCE DEPARTMENT | HREADS L3.17
17
[’ L]
Thread: Methods that impact the thread’s lifecycle
B
public class Thread implements Runnable {
public void start():;
public void run();
public void stop();
public void resume(); }Depr‘eca'red, do not use
public void suspend() ;
public static void sleep(long millis);
public boolean isAlive();
public void interrupt();
public boolean isInterrupted();
public static boolean interrupted();
public void join();
}

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY GQupuTER SCIENGE DEPARTMENT ~ THREADS

L3.18

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L3.9

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Thread creation

Threads are represented by instances of the Thread class

When you extend the Thread class?

Your instances are also Threads

We looked at the 4 constructor arguments in the Thread class

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS L3.19

19

Starting a thread [1/2]

Thread exists once it’s been constructed

But it is not executing ... it's in a waiting state

In the waiting state, other threads can interact with the existing thread
object
Obiject state may be changed by other threads

Via method invocations

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.20

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L3.10

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Starting a thread [2/2]

When we’re ready for a thread to begin executing code
Call the start () method

start () performs internal house-keeping and then calls the run () method

When the start () method returns?

Two threads are executing in parallel
(1) The original thread which just returned from calling start ()
(2) The newly started thread that is executing its run () method

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS L3.21

21

After a thread’s start () method is called

The new thread is said to be alive

The isAlive () method tells you about the state
true: Thread has been started and is executing its run () method

false: Thread may not be started yet or may be terminated

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.22

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L3.11

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Terminating a thread

Once started, a thread executes only one method: run ()

This run () may be complicated

May execute forever

Call several other methods

Once the run () finishes executing, the thread has completed its

execution

COLORADO STATE UNIVERSITY COniren SOENGE DEPARTMENT ~ THREADS L3.23
23

Like all Java methods, run () finishes when it ...

(1) Executes a return statement

(2) Executes the last statement in its method body

(3) When it throws an exception

Or fails to catch an exception thrown to it

COLORADD STATE UNIVERSITY (orescr S o kN THREADS L3.24
24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.12

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

The only way to terminate a thread?

Arrange for its run () method to complete

But the documentation for the Thread class lists a stop () method?

This has a race condition (unsafe), and has been deprecated

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS L3.25

25

Some more about the run () method

Cannot throw a checked exception

But it can throw an unchecked exception

Exception that extends the RuntimeException

A thread can be stopped by:
(1) Throwing an unchecked exception in run ()

(2) Failing to catch an unchecked exception thrown by something that run ()
has called

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.26

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L3.13

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Pausing, suspending and resuming threads

Some thread models support the concept of thread suspension

Thread is told to pause execution and then told to resume its execution

Thread contains suspend () and resume ()

Suffers from vulnerability to race conditions: deprecated

Thread can suspend its own execution for a specified period

By calling the sleep () method

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS

L3.27

27

But sleeping is not the same thing as thread
suspension

With true thread suspension

One thread can suspend (and later resume) another thread

sleep () affects only the thread that executes it

Not possible to tell another thread to go to sleep

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY GQupuTER SCIENGE DEPARTMENT ~ THREADS

L3.28

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L3.14

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

But you can achieve the functionality of suspension
and resumption

Use wait and notify mechanisms

Threads must be coded to use this technique

This is not a generic suspend/resume that is imposed by another thread

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS L3.29

29

Thread cleanup

As long as some other active object holds a reference to the
terminated thread object

Other threads can execute methods on the terminated thread ... retrieve
information

If the object representing the terminated thread goes out of scope?

The thread object is garbage collected

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.30

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L3.15

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Holding onto a thread reference allows us to

determine if work was completed
|

1 Done using the join () method

1 The Jjoin () method

Blocks until the thread has completed

Returns immediately if
u The thread has already completed its run () method

You can call join () any number of times

1 Don’t use join () to poll if the thread is still running

Use isAlive ()

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS

L3.31

31

STOPPING A THREAD

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L3.16

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Two approaches to stopping a thread

1 Setting a flag

1 Interrupting a thread

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS L3.33

33

Stopping a Thread: Setting a flag

-1 Set some internal flag to signal that the thread should stop

01 Thread periodically queries the flag to determine if it should exit

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.34

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L3.17

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Stopping a Thread: Setting a flag

public class RandomGen extends Thread {
private volatile boolean done = false;

public void run() {
while ('done) ({

}
}

public void setDone () {
done = true;

}

run () method investigates the state of the done variable on every loop.
Returns when the done flag has been set.

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS L3.35

35

Interrupting a thread

In the previous slide, there may be a delay in the setDone () being
invoked & thread terminating

Some statements are executed after setDone () and before the value of
done is checked

In the worst case, setDone () is called right after the the done variable
was checked

Delays while waiting for a thread to terminate are inevitable

But it would be good if they could be minimized

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.36

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.18

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Interrupting a thread

When we arrange for thread to terminate, we:
Want it to complete its blocking method immediately

Don’t wish to wait for the data (or ...) because the thread will exit

Use interrupt () method of the Thread class to interrupt any
blocking method

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS L3.37

37

Effects of the interrupt method

Causes blocked method to throw an InterruptedException
sleep (), wait (), join (), and methods to read 1/O

Sets a flag inside the thread object to indicate that the thread has
been interrupted
Queried using isInterrupted()

Returns true if it was interrupted, even though it was not blocked

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.38

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.19

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Stopping a thread: Using interrupts

public class RandomGen extends Thread {

public void run() {
while (!isInterrupted()) {

}

radomGeneratorThread. interrupt ()

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS L3.39

39

The Runnable interface

Allows separation of the implementation of the task from the thread
used to run task

public interface Runnable {

public void run() ;

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.40

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.20

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Construct the thread

Pass runnable object to the thread’s constructor

Start the thread

Instead of starting the runnable object

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS

Creation of a thread using the Runnable interface

L3.41

41

public class RandomGenerator implements Runnable {

public void run() { ... }

generator = new RandomGenerator () ;
Thread createdThread = new Thread(generator) ;
createdThread.start () ;

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS

Creation of a thread using the Runnable interface

L3.42

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L3.21

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

When to use Runnable and Thread

Extend Thread

If your class needs to inherit from other classes

Implement Runnable

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS

If you would like your class to inherit behavior from the Thread class

L3.43

43

If you extend the Thread class?

You inherit behavior and methods of the Thread class
The interrupt () method is part of the Thread class

You can interrupt () if you extend

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS

L3.44

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L3.22

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Advantages of using the Runnable interface

Java provides several classes that handle threading for you
Implement pooling, scheduling, or timing

These require the Runnable interface

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS L3.45

45

But what if | still can’t decide?

Do a UML model of your application

The object hierarchy tells you what you need:

If your task needs to subclass another class?

Use Runnable

If you need to use methods of Thread within your class?
Use Thread

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.46

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.23

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Threads and Obijects

Instance of the Thread class is just an object

Can be passed to other methods
If a thread has a reference to another thread

It can invoke any method of that thread’s object

The Thread object is not the thread itself

It is the set of methods and data that encapsulate information about the

thread
COLORADO STATE UNIVERSITY COniren SOENGE DEPARTMENT ~ THREADS L3.47
47
L]
But what does this mean?
You cannot look at the object source and know which thread is:
Executing its methods or examining its data
You may wonder about which thread is running the code, but ...
There may be many possibilities
COLORADD STATE UNIVERSITY (orescr S o kN THREADS L3.48
48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.24

CSx55: Distributed Systems

Dept. Of Computer Science, Colorado State University

executed either:

By a completely different thread

Retrieve reference to current thread

Thread.currentThread ()

Static method

Determining the current thread

By thread represented by the object or

Code within a thread object might want to see that code is being

49
L] ° L] L]
Checking which thread is executing the code
public class MyThread extends Thread ({
public void run () {
if (Thread.currentThread() != this) {
throw new IllegalStateException
(“Run method called by incorrect thread ..);
} /* end if */
. Main logic
}
}
THREADS L3.50

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L3.25

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Allowing a Runnable object to see if it has been

interrupted
public class MyRunnable implements Runnable {
public void run() {
if (!Thread.currentThread() .isInterrupted()) {

. Main logic

}

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS L3.51

51

The contents of this slide-set are based on the
following references

o Java Threads. Scott Oaks and Henry Wong. . 3rd Edition. O’Reilly Press. ISBN: 0-596-
00782-5/978-0-596-00782-9. [Chapters 3, 4]

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L3.52

52

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L3.26

