
SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.1

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CSX55: DISTRIBUTED SYSTEMS [THREADS]

Shrideep Pallickara
Computer Science

Colorado State University

The House of Heap and Stacks
Stacks clean up after themselves
 But over deep recursions they fret

The cheerful heap has nary a care
 Harboring memory leaks, hurtling to a crash

1

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.2

Frequently asked questions from the previous class
survey

¨ What’s an induced liveness stall?

¨ What is the state that is individual to each thread?
¨ Execution pipelines and their relation to the ALU

¨ Thread vs. Processes: page faults
¨ Asynchronous I/O

¨ Bytecode compiling a separate Java thread
¨ Program blocking, heaps, program counter

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.2

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.3

Topics covered in this lecture

¨ Threads
¤ Thread Creation
¤ Heaps and Stacks
¤ Thread Lifecycle

3

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.4

Thread Abstraction

¨ A thread is a single execution sequence that represents a separately
schedulable task

¤ Single execution sequence
n Each thread executes sequence of instructions – assignments, conditionals, loops,

procedures, etc. – just as the sequential programming model

¤ Separately schedulable task
n The OS can run, suspend, or resume a thread at any time

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.3

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

THREAD CREATION

5

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.6

Thread creation

¨ Using the Thread class

¨ Using the Runnable interface

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.4

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.7

The Thread class
package java.lang;

public class Thread implements Runnable {
 public Thread();
 public Thread(Runnable target);
 public Thread(ThreadGroup group, Runnable target);
 public Thread(String name);
 public Thread(ThreadGroup group, String name);
 public Thread(Runnable target, String name);
 public Thread(ThreadGroup group, Runnable target,
 String name);
 public Thread(ThreadGroup group, Runnable target,
 String name, long stackSize);

 public void start();
 public void run();

}

7

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.8

Threads require 4 pieces of information

¨ Thread name
¤ Default is Thread-N; N is a unique number

¨ Runnable target
¤ List of instructions that the thread executes
¤ Default: run() method of the thread itself

¨ Thread group
¤ A thread is assigned to the thread group of the thread that calls the constructor

¨ Stack size
¤ Store temporary variables during method execution
¤ Platform-dependent: range of legal values, optimal value, etc.

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.5

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.9

A simple thread

public class RandomGen extends Thread {
 private Random random;
 private int nextNumber;
 public RandomGen() {random = new Random();}

 public void run() {
 for (;;) {
 nextNumber = random.nextInt();
 try {

 } catch (InterruptedException ie) {
 ... return;
 }
 }
 }
}

9

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.10

About the code snippet

¨ Extends the Thread class

¨ Actual instructions we want to execute is in the run() method
¤ Standard method of the Thread class

n Place where Thread begins execution

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.6

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.11

Contrasting the run() and main() methods

¨ main() method
¤ This is where the first thread starts executing
¤ The main thread

¨ The run() method
¤ Subsequent threads start executing with this method

11

COMPUTER SCIENCE DEPARTMENT

THREADS AND…
HEAPS AND STACKS

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.7

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.13

Threads and heaps

¨ For performance reasons, heaps may internally subdivide their space into
per-thread regions
¤ Threads can allocate objects at the same time without interfering with each other
¤ By allocating objects used by the same thread from the same memory region?

n Cache hit rates may improve

¨ Each subdivision of the heap has thread-local variables
¤ Track parts of thread-local heap in use, those that are free, etc.

¨ New memory allocations (malloc() and new()) can take memory from
shared heap, only if local heap is used up

13

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.14

How big a stack? [1/2]

¨ The size of the stack must be large enough to accommodate the
deepest nesting level needed during the thread’s lifetime

¨ Kernel threads
¤ Kernel stacks are allocated in physical memory
¤ The nesting depth for kernel threads tends to be small
¤ E.g., 8KB default in Linux on an Intel x86
¤ Buffers and data structures are allocated on the heap and never as

procedure local variables

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.8

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.15

How big a stack? [2/2]

¨ User-level stacks are allocated in virtual memory

¨ To catch program errors
¤ Most OS will trigger error if the program stack grows too large too quickly

n Indication of an unbounded recursion

¤ Google’s GO will automatically grow the stack as needed … this is very
uncommon

¤ POSIX, for e.g., allows default stack size to be library dependent (e.g.
larger on a desktop, smaller on a phone)
n “Exceeding default stack limit is very easy to do, with the usual results”

n Program termination

15

COMPUTER SCIENCE DEPARTMENT

THREAD LIFECYCLE

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.9

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.17

Lifecycle of a thread

¨ Creation

¨ Starting
¨ Terminating

¨ Pausing, suspending, and resuming

17

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.18

Thread: Methods that impact the thread’s lifecycle

public class Thread implements Runnable {
 public void start();
 public void run();
 public void stop();
 public void resume();
 public void suspend();
 public static void sleep(long millis);
 public boolean isAlive();
 public void interrupt();
 public boolean isInterrupted();
 public static boolean interrupted();
 public void join();
}

Deprecated, do not use

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.10

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.19

Thread creation

¨ Threads are represented by instances of the Thread class

¨ When you extend the Thread class?
¤ Your instances are also Threads

¨ We looked at the 4 constructor arguments in the Thread class

19

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.20

Starting a thread [1/2]

¨ Thread exists once it’s been constructed
¤ But it is not executing … it’s in a waiting state

¨ In the waiting state, other threads can interact with the existing thread
object
¤ Object state may be changed by other threads

n Via method invocations

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.11

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.21

Starting a thread [2/2]

¨ When we’re ready for a thread to begin executing code
¤ Call the start() method
¤ start() performs internal house-keeping and then calls the run() method

¨ When the start() method returns?
¤ Two threads are executing in parallel

① The original thread which just returned from calling start()

② The newly started thread that is executing its run() method

21

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.22

After a thread’s start() method is called

¨ The new thread is said to be alive

¨ The isAlive() method tells you about the state
§ true: Thread has been started and is executing its run() method
§ false: Thread may not be started yet or may be terminated

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.12

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.23

Terminating a thread

¨ Once started, a thread executes only one method: run()

¨ This run() may be complicated
¤ May execute forever
¤ Call several other methods

¨ Once the run() finishes executing, the thread has completed its
execution

23

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.24

Like all Java methods, run() finishes when it …

① Executes a return statement

② Executes the last statement in its method body

③ When it throws an exception
¤ Or fails to catch an exception thrown to it

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.13

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.25

The only way to terminate a thread?

¨ Arrange for its run() method to complete

¨ But the documentation for the Thread class lists a stop() method?
¤ This has a race condition (unsafe), and has been deprecated

25

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.26

Some more about the run() method

¨ Cannot throw a checked exception

¨ But it can throw an unchecked exception
¤ Exception that extends the RuntimeException

¨ A thread can be stopped by:
① Throwing an unchecked exception in run()
② Failing to catch an unchecked exception thrown by something that run()

has called

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.14

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.27

Pausing, suspending and resuming threads

¨ Some thread models support the concept of thread suspension
¤ Thread is told to pause execution and then told to resume its execution

¨ Thread contains suspend() and resume()
¤ Suffers from vulnerability to race conditions: deprecated

¨ Thread can suspend its own execution for a specified period
¤ By calling the sleep() method

27

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.28

But sleeping is not the same thing as thread
suspension

¨ With true thread suspension
¤ One thread can suspend (and later resume) another thread

¨ sleep() affects only the thread that executes it
¤ Not possible to tell another thread to go to sleep

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.15

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.29

But you can achieve the functionality of suspension
and resumption

¨ Use wait and notify mechanisms

¨ Threads must be coded to use this technique
¤ This is not a generic suspend/resume that is imposed by another thread

29

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.30

Thread cleanup

¨ As long as some other active object holds a reference to the
terminated thread object
¤ Other threads can execute methods on the terminated thread … retrieve

information

¨ If the object representing the terminated thread goes out of scope?
¤ The thread object is garbage collected

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.16

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.31

Holding onto a thread reference allows us to
determine if work was completed

¨ Done using the join() method

¨ The join() method
¤ Blocks until the thread has completed
¤ Returns immediately if

n The thread has already completed its run() method
n You can call join() any number of times

¨ Don’t use join() to poll if the thread is still running
¤ Use isAlive()

31

COMPUTER SCIENCE DEPARTMENT

STOPPING A THREAD

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.17

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.33

Two approaches to stopping a thread

¨ Setting a flag

¨ Interrupting a thread

33

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.34

Stopping a Thread: Setting a flag

¨ Set some internal flag to signal that the thread should stop

¨ Thread periodically queries the flag to determine if it should exit

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.18

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.35

Stopping a Thread: Setting a flag

public class RandomGen extends Thread {
 private volatile boolean done = false;

 public void run() {
 while (!done) {
 ...
 }
 }

 public void setDone() {
 done = true;
 }
}

run() method investigates the state of the done variable on every loop.
Returns when the done flag has been set.

35

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.36

Interrupting a thread

¨ In the previous slide, there may be a delay in the setDone() being
invoked & thread terminating
¤ Some statements are executed after setDone() and before the value of
done is checked

¤ In the worst case, setDone() is called right after the the done variable
was checked

¨ Delays while waiting for a thread to terminate are inevitable
¤ But it would be good if they could be minimized

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.19

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.37

Interrupting a thread

¨ When we arrange for thread to terminate, we:
¤ Want it to complete its blocking method immediately
¤ Don’t wish to wait for the data (or …) because the thread will exit

¨ Use interrupt() method of the Thread class to interrupt any
blocking method

37

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.38

Effects of the interrupt method

¨ Causes blocked method to throw an InterruptedException
¤ sleep(), wait(), join(), and methods to read I/O

¨ Sets a flag inside the thread object to indicate that the thread has
been interrupted
¤ Queried using isInterrupted()

n Returns true if it was interrupted, even though it was not blocked

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.20

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.39

Stopping a thread: Using interrupts

public class RandomGen extends Thread {

 public void run() {
 while (!isInterrupted()) {
 ...
 }
 }

}

radomGeneratorThread.interrupt()

39

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.40

The Runnable interface

¨ Allows separation of the implementation of the task from the thread
used to run task

public interface Runnable {

 public void run();

}

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.21

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.41

Creation of a thread using the Runnable interface

¨ Construct the thread
¤ Pass runnable object to the thread’s constructor

¨ Start the thread
¤ Instead of starting the runnable object

41

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.42

Creation of a thread using the Runnable interface

public class RandomGenerator implements Runnable {

 public void run() { ... }

}

...
 generator = new RandomGenerator();
 Thread createdThread = new Thread(generator);
 createdThread.start();

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.22

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.43

When to use Runnable and Thread

¨ If you would like your class to inherit behavior from the Thread class
¤ Extend Thread

¨ If your class needs to inherit from other classes
¤ Implement Runnable

43

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.44

If you extend the Thread class?

¨ You inherit behavior and methods of the Thread class
¤ The interrupt() method is part of the Thread class
¤ You can interrupt() if you extend

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.23

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.45

Advantages of using the Runnable interface

¨ Java provides several classes that handle threading for you
¤ Implement pooling, scheduling, or timing
¤ These require the Runnable interface

45

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.46

But what if I still can’t decide?

¨ Do a UML model of your application

¨ The object hierarchy tells you what you need:
¤ If your task needs to subclass another class?

n Use Runnable

¤ If you need to use methods of Thread within your class?
n Use Thread

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.24

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.47

Threads and Objects

¨ Instance of the Thread class is just an object
¤ Can be passed to other methods
¤ If a thread has a reference to another thread

n It can invoke any method of that thread’s object

¨ The Thread object is not the thread itself
¤ It is the set of methods and data that encapsulate information about the

thread

47

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.48

But what does this mean?

¨ You cannot look at the object source and know which thread is:
¤ Executing its methods or examining its data

¨ You may wonder about which thread is running the code, but …
¤ There may be many possibilities

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.25

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.49

Determining the current thread

¨ Code within a thread object might want to see that code is being
executed either:
¤ By thread represented by the object or
¤ By a completely different thread

¨ Retrieve reference to current thread
¤ Thread.currentThread()

¤ Static method

49

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.50

Checking which thread is executing the code
public class MyThread extends Thread {

 public void run() {
 if (Thread.currentThread() != this) {
 throw new IllegalStateException
 (“Run method called by incorrect thread …);
 } /* end if */

 ... Main logic
 }

}

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA L3.26

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.51

Allowing a Runnable object to see if it has been
interrupted

public class MyRunnable implements Runnable {

 public void run() {
 if (!Thread.currentThread().isInterrupted()) {
 ... Main logic
 }
 }

}

51

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L3.52

The contents of this slide-set are based on the
following references
¨ Java Threads. Scott Oaks and Henry Wong. . 3rd Edition. O’Reilly Press. ISBN: 0-596-

00782-5/978-0-596-00782-9. [Chapters 3, 4]

52

