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Spark: It’s all about transformation and actions

Transformations
Wrangle with the data
Consume, and beget, an RDD
Flock together... to form daisy chains

But it is actions
That trigger evaluations
Providing them potency
Revealing their expressive power
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Are the Spark model fitting libraries distributed?

SPARK

Frequently asked questions from the previous class

What if the data is too big to fit in memory of a large, distributed
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Topics covered in this lecture

Spark APIs
Resilient Distributed Datasets

Common Transformations and Actions

COLORADD STATE UNIVERSITY  Goremor e e e arrment  SPARK L30.3
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Spark APIs

Spark has two fundamental sets of APls:
The low-level “unstructured” APIs, and

The higher-level structured APIs

Professor: SHRIDEEP PALLICKARA
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Structured APIs

Structured APIs are a tool for manipulating all sorts of data

From unstructured log files to semi-structured CSV files and highly structured
Parquet files

Refers to three core types of distributed collection APIs:
Datasets
DataFrames
SQL tables and views

Maijority of the Structured APIs apply to both batch and streaming
computation

Professor: SHRIDEEP PALLICKARA
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Spark’s Toolset

Structured Advanced Libraries &
Streaming Analytics Ecosystem

Structured APIs
Datasets DataFrames SQLs

Low Level APIs

RDDs Distributed variables
COLORADD STATE UNIVERSITY  Goremor e e e arrment  SPARK L30.7
7
Spark has two notions of structured collections:
DataFrames and Datasets
DataFrames and Datasets are (distributed) table-like collections with
well-defined rows and columns
Each column:
Must have the same number of rows as all the other columns (although you
can use null to specify the absence of a value)
Has type information that must be consistent for every row in the collection.
COLORADD STATE UNIVERSITY (oo e e arrmenT  SPARK L30.8
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DataFrames versus Datasets

DataFrames are considered “untyped”

Datasets are considered “typed”

Professor: SHRIDEEP PALLICKARA
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How does Spark view DataFrames and Datasets?

To Spark, DataFrames and Datasets represent immutable, lazily
evaluated plans that specify what operations to apply to data
residing at a location to generate some output

When we perform an action on a DataFrame, we instruct Spark to
perform the actual transformations and return the result

These represent plans of how to manipulate rows and columns to
compute the user’s desired result

Professor: SHRIDEEP PALLICKARA
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10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L30.5



CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

The DataFrame is the most common Structured API

Simply represents a table of data with rows and columns

The list that defines the columns and the types within those columns is
called the schema

Professor: SHRIDEEP PALLICKARA
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The DataFrame concept is not unique to Spark

R and Python both have similar concepts

However, Python/R DataFrames (with some exceptions) exist on one machine
rather than multiple machines

This limits what you can do with a given DataFrame to the resources that
exist on that specific machine

A Spark DataFrame can span thousands of computers

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.12

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L30.6



CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

CORE SPARK CONCEPTS

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY
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Core Spark Concepts
Drivers
SparkContext
Executors
COLORADD STATE UNIVERSITY (oo e e arrmenT  SPARK L30.14
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Spark in a nutshell

Spark allows users to write a program for the driver (or master node) on a
cluster computing system that can perform operations on data in parallel

Spark represents large datasets as RDDs which are stored in the executors
(or worker nodes)

The obijects that comprise RDDs are called partitions and may be (but do
not need to be) computed on different nodes of a distributed system

The Spark cluster manager handles starting and distributing the Spark
executors across a distributed system

Professor: SHRIDEEP PALLICKARA
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Drivers

Every Spark application consists of a driver program
Driver launches various parallel operations on the cluster

Constituent elements
Application’s main function
Defines distributed datasets on the clusters

Applies operations to these datasets

Professor: SHRIDEEP PALLICKARA
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SparkContext

Driver programs access Spark through a SparkContext object

Represents a connection to a computing cluster

Within the shell?

Created as the variable sc

You can even print out sc to see the the type

Once you have a SparkContext, you can use it to build RDDs

And then run operations on the data ...

Professor: SHRIDEEP PALLICKARA
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Executors

Driver programs manage a number of nodes, called executors
Executors are responsible for running operations

For example:

If we were running a count () operation on cluster

Different machines might count lines in different ranges of the file

Professor: SHRIDEEP PALLICKARA
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Executor

Task || Task

SparkContext

Executor

Task

Professor: SHRIDEEP PALLICKARA
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Components for distributed execution in Spark

L30.19
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def hasPython (line)
return “Python” in line

pythonLines =
lines.filter (hasPython)

pythonLines =

Also known as the lambda or => syntax

Professor: SHRIDEEP PALLICKARA
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lines.filter (line => line.contains (“Python”)

Lot of Spark’s APl revolves around passing functions

to its ogera’rors |1 ‘2|
(o

L30.20
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Lot of Spark’s APl revolves around passing functions
to its operators [2/2]

JavaRDD<String> pythonLines = lines.filter(
new Function<String, Boolean> () {
Boolean call (String line) {
return line.contains (“Python”) ;
}
}
);

JavaRDD<String> pythonLines =

lines.filter(line -> line.contains (“Python”) );
COLORADD STATE UNIVERSITY  Goremor e e e arrment  SPARK L30.21
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Resilient Distributed Dataset (RDD)

RDD is an immutable distributed collection of objects

Each RDD is split into multiple partitions

Maybe computed on different nodes in the cluster

Can contain any type of Java, Scala, or Python objects

Including user-defined classes

Professor: SHRIDEEP PALLICKARA
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Creation of RDDs

(1) Loading an external dataset

(2) Distributing a collection of objects via the driver program

>>> lines = sc.textFile (“README.md”)

Professor: SHRIDEEP PALLICKARA
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Once created, RDDs offer two types of operations

Transformations
Construct a new RDD from a previous one

E.g.: Filtering data that matches a predicate

Actions
Compute a result based on an RDD

Return result to the driver program or save it in an external storage system
(HDFS)

Professor: SHRIDEEP PALLICKARA
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Some more about RDDs

Although you can define new RDDs anytime

Spark computes them in a lazy fashion
When?

The first time they are used in an action

Loading lazily allows transformations to be performed before the
action

Professor: SHRIDEEP PALLICKARA
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Lazy loading allows Spark to see the whole chain of
transformations

Allows it to compute just the data needed for the result

Example:
lines = sc.textFile (“README.md”)

pythonLines= lines.filter (lambda line: “Python” in line)

If Spark were to load and store all lines in the file, as soon as we

Wrote lines=sc.textFile () 2

Would waste a lot of storage space, since we immediately filter out a lot of
lines

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY  CopmpyteR SCIENCE DEPARTMENT SPARK L30.27
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RDD and actions

RDDs are recomputed (by default) every time you run an action on
them

If you wanted to reuse an RDD?

Ask Spark to persist it using rRDD.persist ()

After computing it the first time, Spark will store RDD contents in memory
(partitioned across cluster machines)

Persisted RDD is used in future actions

Professor: SHRIDEEP PALLICKARA
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RDDs: memory residency and immutability
implications

Spark can keep an RDD loaded in-memory on the executor nodes
throughout the life of a Spark application for faster access in
repeated computations

RDDs are immutable, so transforming an RDD returns a new RDD
rather than the existing one

Cross-cutting implications?

Lazy evaluation, in-memory storage, and immutability allows Spark to be
easy-to-use, fault-tolerant, scalable, and efficient

Professor: SHRIDEEP PALLICKARA
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Every Spark program and shell works as follows

(D Create some input RDD from external data

(2 Transform them to define new RDDs using transformations like
filter ()

(3) Ask Spark to persist () any intermediate RDDs that needs to be
reused

@ Launch actions such as count (), etc. to kickoff a parallel
computation

Computing is optimized and executed by Spark

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT SPARK L30.30
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A CLOSER LOOK AT RDD OPERATIONS

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY
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RDDs support two types of operations

Transformations

Operations that return a new RDD. E.g.: filter ()

Actions
Operations that return a result to the driver program or write to storage

Kicks of a computation. E.g.: count ()
Distinguishing aspect?
Transformations return RDDs

Actions return some other data type

Professor: SHRIDEEP PALLICKARA
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Transformations

Many transformations are element-wise

Work on only one element at a time

Some transformations are not element-wise

E.g.: We have a logfile, log.text, with several messages, but we only want to
select error messages

inputRDD = sc.textFile(“log.txt”)

errorsRDD = inputRDD.filter (lambda x:”error” in x)
COLORADD STATE UNIVERSITY  Goremor e e e arrment  SPARK 130.33
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L[]
In our previous example ...
filter does not mutate inputRDD
Returns a pointer to an entirely new RDD
inputRDD can still be reused later in the program
We could use inputRDD to search for lines with the word “warning”
While we are at it, we will use another transformation, union (), to print
number of lines that contained either
errorsRDD = inputRDD.filter (lambda x: “error” in x)
warningsRDD = inputRDD.filter (lambda x: “warning” in x)
badlinesRDD = errorsRDD.union (warningsRDD)
COLORADD STATE UNIVERSITY (oo e e arrmenT  SPARK L30.34
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In our previous example

Note how union () is different from filter ()

Operates on 2 RDDs instead of one

Transformations can actually operate on any number of RDDs

Professor: SHRIDEEP PALLICKARA
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RDD Lineage graphs

As new RDDs are derived from each other using transformations,
Spark tracks dependencies

Lineage graph

Uses lineage graph to
Compute each RDD on demand

Recover lost data if part of persistent RDD is lost

Professor: SHRIDEEP PALLICKARA
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RDD lineage graph for our example
inputRDD
filter filter
errorsRDD warningsRDD
\ union /
badLinesRDD
37
L]
Actions
We can create RDDs from each other using transformations
At some point, we need to actually do something with the dataset
Actions
Forces evaluations of the transformations required for the RDD they
were called on
COLORADD STATE UNIVERSITY (oo e e arrmenT  SPARK L30.38
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print “Input had “ + badLinesRDD.count ()

Let’s try to print information about badlinesRDD

+ “concerning lines”

print “here are 10 examples:”

for line in badLinesRDD.take (10)

print line

Professor: SHRIDEEP PALLICKARA SPARK L30.39
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RDDs also have a collect to retrieve the entire
RDD

Useful if program filters RDD to a very small size and you want to deal

locally
Your entire dataset must fit in memory on a single machine to use collect ()

on it
Should NOT be used on large datasets

In most cases, RDDs cannot be collect () ed to the driver

Common to write data out to a distributed storage system ... HDFS or S3

Professor: SHRIDEEP PALLICKARA
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40

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L30.20



CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Lazy Evaluation

Transformations on RDDs are lazily evaluated

Spark will not begin to execute until it sees an action

Uses this to reduce the number of passes it has to take over data by
grouping operations together

What does this mean?

When you call a transformation on an RDD (for e.g., map) the operation is
not immediately performed

Spark internally records metadata that operation is requested

Professor: SHRIDEEP PALLICKARA
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How you should think of RDDs

Rather than thinking of it as containing specific data

Best to think of it as containing instructions on how to compute the data
that we build through transformations

Loading data into a RDD is lazily evaluated just as transformations
are

Professor: SHRIDEEP PALLICKARA
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COMMON TRANSFORMATIONS AND
ACTIONS
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Element-wise transformations: filter ()

Takes in a function and returns an RDD that only has elements that pass
the filter () function

Professor: SHRIDEEP PALLICKARA
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Element-wise transformations: map ()

Takes in a function and applies it to each element in the RDD

Result of the function is the new value of each element in the resulting
RDD

inputRDD
{1,2,3,4}

map x => x*Ner x => x !=1

Mapped RDD Filtered RDD
{1,4,9,16} {2,3,4}

Professor: SHRIDEEP PALLICKARA
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Things that can be done with map ()

Fetch website associated with each URL in collection to just squaring
numbers

map ()’s return type does not have to be the same as its input type

Multiple output elements for each input element?
Use flatMap ()
lines=sc.parallelize([“hello world”, “hi”])

words=lines.flatMap (lambda line: line.split (™ %) )

words.first () # returns hello

Professor: SHRIDEEP PALLICKARA
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Difference between map and flatMap

mappedRDD
{[“coffee", npdndqu]l [uhqppyu, “pdnda”],

[“happiest”, “panda”, “party”]}

RDD1.map(tokenize)

RDD1

{“coffee panda”, “happy panda”,
“happiest panda party”}

flatMappedRDD

{“coffee”, “panda”, “happy”, “panda”,

LIS LI T

“happiest”, “panda”, “party”}

RDD1.flatMap(tokenize)

Professor: SHRIDEEP PALLICKARA
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Psuedo set operations

RDDs support many of the operations of mathematical sets such as
union, intersection, etc.

Even when the RDDs themselves are not properly sets

Professor: SHRIDEEP PALLICKARA
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Some simple set operations

RDD1
{coffee, coffee, panda, RPD2
tiger, tea} {coffee, tiger, snake}
isti RDD1.union(RDD2)
RDDI '.dls"nd() : RDD1.intersection(RDD2)
{coffee, tiger, panda, {coffee, coffee, coffee, ‘
tea} panda, tiger, tiger, tea, {coffee, tiger}

snake}

RDD1.subtract(RDD2)
{panda, tea}

COLORADD STATE UNIVERSITY  Goremor e e e arrment  SPARK L30.49
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Cartesian product between two RDDs
RDD1.cartesian(RDD2)
RDD1 { (User1, Venue(“Betabrand™)),
{User1, User2, User3} (User1,Venue(“Asha Tree House”)),
(User1,Venue(“Ritual™)),
) (User2, Venue(“Betabrand™)),
cartesian (User2,Venue(“Asha Tree House™)),
(User2,Venue(“Ritual”)),
RDD2 (User3, Venue(“Betabrand™)),
{Venue(“Betabrand”), (User3,Venue(“Asha Tree House”)),
Venue(“Asha Tree House”), (User3,Venue(“Ritual”))  }
Venue(“Ritual”)}
L30.50
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COMMON ACTIONS
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Actions on Basic RDDs

reduce ()

Takes a function that operates on two elements in the RDD; returns an
element of the same type

E.g., of such an operation? + sums the RDD
sum = rdd.reduce((x,y) => x + V)

fold () takes a function with the same signature as reduce (), but
also takes a “zero value” for initial call

“Zero value” is the identity element for initial call
E.g., O for +, 1 for *, empty list for concatenation

Professor: SHRIDEEP PALLICKARA
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Both fold () and reduce () require return type of
same type as the RDD elements

The aggregate () removes that constraint

For e.g., when computing a running average, maintain both the count so far
and the number of elements

Professor: SHRIDEEP PALLICKARA
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EXAMPLES: BASIC ACTIONS ON RDDs

COMPUTER SCIENCE DEPARTMENT @ COLORADO STATE UNIVERSITY
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Examples: Basic actions on RDDs [1/7]

Our RDD contains {1, 2, 3, 3}

collect()

Return all elements from the RDD
Invocation: rdd.collect ()

Result: {1, 2,3, 3}

Professor: SHRIDEEP PALLICKARA
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Examples: Basic actions on RDDs [2/7]

Our RDD contains {1, 2, 3, 3}

count ()

Number of elements in the RDD
Invocation: rdd.count ()

Result: 4

Professor: SHRIDEEP PALLICKARA
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Examples: Basic actions on RDDs [3/7]

Our RDD contains {1, 2, 3, 3}

countByValue ()

Number of times each element occurs in the RDD
Invocation: rdd.countByValue ()

Result: {(1,1),(2,1),(3,2) }

Professor: SHRIDEEP PALLICKARA
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Examples: Basic actions on RDDs [4/7]

Our RDD contains {1, 2, 3, 3}

take (num)
Return num elements from the RDD

Invocation: rdd.take (2)

Result: {1, 2}

Professor: SHRIDEEP PALLICKARA
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Examples: Basic actions on RDDs

Our RDD contains {1, 2, 3, 3}

reduce (func)
Combine the elements of the RDD together in parallel
Invocation: rdd.reduce( (x,y) => x + vy )

Result: 9

Professor: SHRIDEEP PALLICKARA
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Examples: Basic actions on RDDs

Our RDD contains {1, 2, 3, 3}

aggregate (zeroValue) (seqOp, combOp)
Similar to reduce () but used to return a different type

Invocation:

rdd.aggregate ( (0,0))
( = (x. 1 +vy, x. 2+ 1),
(x,y) => (x. 1 +vy. 1, x. 2 +vy. 2))

Result: (9, 4)

Professor: SHRIDEEP PALLICKARA
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Examples: Basic actions on RDDs [7/7]

Our RDD contains {1, 2, 3, 3}

foreach (func)

Apply the provided function to each element of the RDD

Invocation: rdd. foreach (func)
Result: Nothing
COLORADD STATE UNIVERSITY  Goremor e e e arrment  SPARK L30.61
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Why persistence?

Spark RDDs are lazily evaluated, and we may sometimes wish to use
the same RDD multiple times

Naively, Spark will recompute RDD and all of its dependencies each time
we call an action on the RDD

Super expensive for iterative algorithms

To avoid recomputing RDD multiple times2
Ask Spark to persist the data
The nodes that compute the RDD, store the partitions
E.g.: result.persist (StorageLevel.DISK ONLY)

Professor: SHRIDEEP PALLICKARA
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Coping with failures

If a node that has data persisted on it fails?

Spark recomputes lost partitions of data when needed

Also, replicate data on multiple nodes

To handle node failures without slowdowns

Professor: SHRIDEEP PALLICKARA
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64

SLIDES CREATED BY: SHRIDEEP PALLICKARA L30.32



CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Persistence Levels for Spark

Level Space CPU In On Comments
Used time Memory disk

MEMORY_ONLY High  Low Y N
MEMORY_ONLY_SER ' Low  High Y N
MEMORY_AND_DISK ' High Medium Some Some  Spills to disk if there is too
much data to fit in memory
MEMORY_AND_DISK | Low High Some Some | Spills to disk if there is too
_SER much data to fit in memory.
Stores serialized
representation in memory
DISK_ONLY low  High N Y
65
What if you attempt to cache too much data that
does not fit in memory?
Spark will evict old partitions using a Least Recently Used Cache
policy
For memory only storage partitions, it will be recomputed the next time they
are accessed
For memory_and_disk ones? Write them out to disk
RDDs also come with a method, unpersist ()
Manually remove data elements from the cache
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The contents of this slide-set are based on the
following references

Learning Spark: Lightning-Fast Big Data Analysis. 1st Edition. Holden Karau, Andy
Konwinski, Patrick Wendell, and Matei Zaharia. O'Reilly. 2015. ISBN-13: 978-
1449358624. [Chapters 1-4]

Karau, Holden; Warren, Rachel. High Performance Spark: Best Practices for Scaling
and Optimizing Apache Spark. O'Reilly Media. 2017. ISBN-13: 978-1491943205.
[Chapter 2]

Chambers, Bill,Zaharia, Matei. Spark: The Definitive Guide: Big Data Processing
Made Simple. O'Reilly Media. ISBN-13: 978-1491912218. 2018. [Chapters 1, 2,
and 3].
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