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Spark: It’s all about transformation and actions
Transformations 
      Wrangle with the data
      Consume, and beget,  an RDD
      Flock together …   to form daisy chains

But it is actions 
    That trigger  evaluations 
         Providing them potency
               Revealing their expressive power
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Frequently asked questions from the previous class 
survey

¨ Are the Spark model fitting libraries distributed?

¨ What if the data is too big to fit in memory of a large, distributed 
cluster?
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Topics covered in this lecture

¨ Spark APIs

¨ Resilient Distributed Datasets
¨ Common Transformations and Actions
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Spark APIs

¨ Spark has two fundamental sets of APIs: 
¤ The low-level “unstructured” APIs, and 
¤ The higher-level structured APIs
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Structured APIs

¨ Structured APIs are a tool for manipulating all sorts of data
¤ From unstructured log files to semi-structured CSV files and highly structured 

Parquet files

¨ Refers to three core types of distributed collection APIs: 
¤ Datasets
¤ DataFrames
¤ SQL tables and views

¨ Majority of the Structured APIs apply to both batch and streaming 
computation
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Spark’s Toolset

Low Level APIs

RDDs Distributed variables

Structured APIs

Datasets DataFrames SQLs

Structured 
Streaming

Advanced 
Analytics

Libraries & 
Ecosystem
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Spark has two notions of structured collections: 
DataFrames and Datasets

¨ DataFrames and Datasets are (distributed) table-like collections with 
well-defined rows and columns 

¨ Each column:
¤ Must have the same number of rows as all the other columns (although you 

can use null to specify the absence of a value) 
¤ Has type information that must be consistent for every row in the collection. 
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DataFrames versus Datasets

¨ DataFrames are considered “untyped” 

¨ Datasets are considered “typed”
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How does Spark view DataFrames and Datasets?

¨ To Spark, DataFrames and Datasets represent immutable, lazily 
evaluated plans that specify what operations to apply to data 
residing at a location to generate some output

¨ When we perform an action on a DataFrame, we instruct Spark to 
perform the actual transformations and return the result 

¨ These represent plans of how to manipulate rows and columns to 
compute the user’s desired result
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The DataFrame is the most common Structured API

¨ Simply represents a table of data with rows and columns

¨ The list that defines the columns and the types within those columns is 
called the schema
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The DataFrame concept is not unique to Spark

¨ R and Python both have similar concepts 
¤ However, Python/R DataFrames (with some exceptions) exist on one machine 

rather than multiple machines 
¤ This limits what you can do with a given DataFrame to the resources that 

exist on that specific machine

¨ A Spark DataFrame can span thousands of computers
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Core Spark Concepts

¨ Drivers

¨ SparkContext

¨ Executors
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Spark in a nutshell

¨ Spark allows users to write a program for the driver (or master node) on a 
cluster computing system that can perform operations on data in parallel 

¨ Spark represents large datasets as RDDs which are stored in the executors 
(or worker nodes) 

¨ The objects that comprise RDDs are called partitions and may be (but do 
not need to be) computed on different nodes of a distributed system

¨ The Spark cluster manager handles starting and distributing the Spark 
executors across a distributed system
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Drivers

¨ Every Spark application consists of a driver program

¨ Driver launches various parallel operations on the cluster

¨ Constituent elements
¤ Application’s main function
¤ Defines distributed datasets on the clusters
¤ Applies operations to these datasets
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SparkContext

¨ Driver programs access Spark through a SparkContext object
¤ Represents a connection to a computing cluster

¨ Within the shell?
¤ Created as the variable sc

n You can even print out sc to see the the type

¨ Once you have a SparkContext, you can use it to build RDDs
¤ And then run operations on the data …
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Executors

¨ Driver programs manage a number of nodes, called executors

¨ Executors are responsible for running operations

¨ For example:
¤ If we were running a count() operation on cluster

n Different machines might count lines in different ranges of the file
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Components for distributed execution in Spark

Driver Program

Worker Node

Worker Node

SparkContext

Executor

Task Task

Executor

Task Task
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Lot of Spark’s API revolves around passing functions 
to its operators                                             [1/2]

def hasPython(line)
   return “Python” in line

pythonLines = 
    lines.filter(hasPython) 

pythonLines = 
 lines.filter(line => line.contains(“Python”) 

Also known as the lambda or => syntax
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Lot of Spark’s API revolves around passing functions 
to its operators                                             [2/2]

JavaRDD<String> pythonLines = lines.filter(
   new Function<String, Boolean> () {
     Boolean call(String line) {
        return line.contains(“Python”);
     }
    }
  );

JavaRDD<String> pythonLines = 
    lines.filter(line -> line.contains(“Python”) );
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Resilient Distributed Dataset (RDD)

¨ RDD is an immutable distributed collection of objects

¨ Each RDD is split into multiple partitions
¤ Maybe computed on different nodes in the cluster

¨ Can contain any type of Java, Scala, or Python objects
¤ Including user-defined classes
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Creation of RDDs

① Loading an external dataset

② Distributing a collection of objects via the driver program

>>> lines = sc.textFile(“README.md”)
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Once created, RDDs offer two types of operations

¨ Transformations
¤ Construct a new RDD from a previous one
¤ E.g.: Filtering data that matches a predicate

¨ Actions
¤ Compute a result based on an RDD
¤ Return result to the driver program or save it in an external storage system 

(HDFS)
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Some more about RDDs

¨ Although you can define new RDDs anytime
¤ Spark computes them in a lazy fashion
¤ When? 

n The first time they are used in an action

¨ Loading lazily allows transformations to be performed before the 
action
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Lazy loading allows Spark to see the whole chain of 
transformations

¨ Allows it to compute just the data needed for the result

¨ Example:
lines = sc.textFile(“README.md”)

pythonLines= lines.filter(lambda line: “Python” in line)

¨ If Spark were to load and store all lines in the file, as soon as we 
wrote lines=sc.textFile()?
¤ Would waste a lot of storage space, since we immediately filter out a lot of 

lines
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RDD and actions

¨ RDDs are recomputed (by default) every time you run an action on 
them

¨ If you wanted to reuse an RDD?
¤ Ask Spark to persist it using RDD.persist()
¤ After computing it the first time, Spark will store RDD contents in memory 

(partitioned across cluster machines)
¤ Persisted RDD is used in future actions 
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RDDs: memory residency and immutability 
implications

¨ Spark can keep an RDD loaded in-memory on the executor nodes 
throughout the life of a Spark application for faster access in 
repeated computations

¨ RDDs are immutable, so transforming an RDD returns a new RDD
rather than the existing one 

¨ Cross-cutting implications?
¤ Lazy evaluation, in-memory storage, and immutability allows Spark to be 

easy-to-use, fault-tolerant, scalable, and efficient
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Every Spark program and shell works as follows

① Create some input RDD from external data

② Transform them to define new RDDs using transformations like 
filter()

③ Ask Spark to persist() any intermediate RDDs that needs to be 
reused

④ Launch actions such as count(), etc. to kickoff a parallel 
computation

¤ Computing is optimized and executed by Spark
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RDDs support two types of operations

¨ Transformations
¤ Operations that return a new RDD.  E.g.: filter()

¨ Actions
¤ Operations that return a result to the driver program or write to storage
¤ Kicks of a computation. E.g.: count()

¨ Distinguishing aspect?
¤ Transformations return RDDs
¤ Actions return some other data type
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Transformations

¨ Many transformations are element-wise
¤ Work on only one element at a time

¨ Some transformations are not element-wise
¤ E.g.: We have a logfile, log.text, with several messages, but we only want to 

select error messages

inputRDD = sc.textFile(“log.txt”)

errorsRDD = inputRDD.filter(lambda x:”error” in x)
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In our previous example …

¨ filter does not mutate inputRDD

¤ Returns a pointer to an entirely new RDD
¤ inputRDD can still be reused later in the program

¨ We could use inputRDD to search for lines with the word “warning”
¤ While we are at it, we will use another transformation, union(), to  print 

number of lines that contained either
errorsRDD = inputRDD.filter(lambda x: “error” in x)

warningsRDD = inputRDD.filter(lambda x: “warning” in x)

badlinesRDD = errorsRDD.union(warningsRDD)
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In our previous example 

¨ Note how union() is different from filter()
¤ Operates on 2 RDDs instead of one

¨ Transformations can actually operate on any number of RDDs
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RDD Lineage graphs

¨ As new RDDs are derived from each other using transformations, 
Spark tracks dependencies
¤ Lineage graph

¨ Uses lineage graph to 
¤ Compute each RDD on demand 
¤ Recover lost data if part of persistent RDD is lost
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RDD lineage graph for our example

inputRDD

errorsRDD warningsRDD

badLinesRDD

filter filter

union
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Actions

¨ We can create RDDs from each other using transformations

¨ At some point, we need to actually do something with the dataset
¤ Actions

¨ Forces evaluations of the transformations required for the RDD they 
were called on
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Let’s try to print information about badlinesRDD

print “Input had “ + badLinesRDD.count() + “concerning lines”

print “here are 10 examples:”

for line in badLinesRDD.take(10)

print  line
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RDDs also have a collect to retrieve the entire 
RDD

¨ Useful if program filters RDD to a very small size and you want to deal 
locally
¤ Your entire dataset must fit in memory on a single machine to use collect()

on it
n Should NOT be used on large datasets

¨ In most cases, RDDs cannot be collect()ed to the driver
¤ Common to write data out to a distributed storage system … HDFS or S3
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Lazy Evaluation

¨ Transformations on RDDs are lazily evaluated
¤ Spark will not begin to execute until it sees an action

¨ Uses this to reduce the number of passes it has to take over data by 
grouping operations together

¨ What does this mean?
¤ When you call a transformation on an RDD (for e.g., map) the operation is 

not immediately performed
¤ Spark internally records metadata that operation is requested
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How you should think of RDDs

¨ Rather than thinking of it as containing specific data
¤ Best to think of it as containing instructions on how to compute the data

that we build through transformations

¨ Loading data into a RDD is lazily evaluated just as transformations 
are
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Element-wise transformations: filter()

¨ Takes in a function and returns an RDD that only has elements that pass 
the filter() function
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Mapped RDD
{1, 4, 9, 16}

Filtered RDD
{2,3,4}

Element-wise transformations: map()

¨ Takes in a function and applies it to each element in the RDD

¨ Result of the function is the new value of each element in the resulting 
RDD

inputRDD
{1,2,3,4}

map x => x*x filter x => x !=1
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Things that can be done with map()

¨ Fetch website associated with each URL in collection to just squaring 
numbers

¨ map()’s return type does not have to be the same as its input type

¨ Multiple output elements for each input element?
¤ Use flatMap()

lines=sc.parallelize([“hello world”, “hi”])

words=lines.flatMap(lambda line: line.split(“ “) )

words.first()   # returns hello

46



SLIDES CREATED BY: SHRIDEEP PALLICKARA L30.24

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L30.47

Difference between map and flatMap

RDD1
{“coffee panda”, “happy panda”, 

“happiest panda party”}

mappedRDD
{[“coffee”, “panda”], [“happy”, “panda”], 

[“happiest”, “panda”,  “party”]}

flatMappedRDD
{“coffee”, “panda”, “happy”, “panda”, 

“happiest”, “panda”,  “party”}

RDD1.flatMap(tokenize)

RDD1.map(tokenize)
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Psuedo set operations

¨ RDDs support many of the operations of mathematical sets such as 
union, intersection, etc.
¤ Even when the RDDs themselves are not properly sets
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Some simple set operations

RDD1
{coffee, coffee, panda, 

tiger, tea}

RDD2
{coffee, tiger, snake}

RDD1.distinct()
{coffee, tiger, panda, 

tea}

RDD1.union(RDD2)
{coffee, coffee, coffee, 
panda, tiger, tiger, tea, 

snake}

RDD1.intersection(RDD2)
{coffee, tiger}

RDD1.subtract(RDD2)
{panda, tea}
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Cartesian product between two RDDs

RDD1
{User1, User2, User3}

RDD2
{Venue(“Betabrand”), 

Venue(“Asha Tree House”), 
Venue(“Ritual”)}

RDD1.cartesian(RDD2)
{  (User1, Venue(“Betabrand”)), 

(User1,Venue(“Asha Tree House”)), 
(User1,Venue(“Ritual”)),

(User2, Venue(“Betabrand”)), 
(User2,Venue(“Asha Tree House”)), 

(User2,Venue(“Ritual”)),
(User3, Venue(“Betabrand”)), 

(User3,Venue(“Asha Tree House”)), 
(User3,Venue(“Ritual”))   }

cartesian
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Actions on Basic RDDs

¨ reduce()
¤ Takes a function that operates on two elements in the RDD; returns an 

element of the same type
n E.g., of such an operation?   +  sums the RDD

sum = rdd.reduce((x,y) => x + y) 

¨ fold() takes a function with the same signature as reduce(), but 
also takes a “zero value” for initial call 
¤ “Zero value” is the identity element for initial call
¤ E.g., 0 for +, 1 for *, empty list for concatenation
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Both fold() and reduce() require return type of 
same type as the RDD elements

¨ The aggregate() removes that constraint
¤ For e.g., when computing a running average, maintain both the count so far 

and the number of elements
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Examples: Basic actions on RDDs                              [1/7]

¨ Our RDD contains {1, 2, 3, 3}

¨ collect()

¤ Return all elements from the RDD

¤ Invocation: rdd.collect()

¤ Result: {1, 2, 3, 3}
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Examples: Basic actions on RDDs                              [2/7]

¨ Our RDD contains {1, 2, 3, 3}

¨ count()

¤ Number of elements in the RDD

¤ Invocation: rdd.count()

¤ Result: 4
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Examples: Basic actions on RDDs                              [3/7]

¨ Our RDD contains {1, 2, 3, 3}

¨ countByValue()

¤ Number of times each element occurs in the RDD

¤ Invocation: rdd.countByValue()

¤ Result: { (1,1), (2,1), (3,2) }
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Examples: Basic actions on RDDs                              [4/7]

¨ Our RDD contains {1, 2, 3, 3}

¨ take(num)

¤ Return num elements from the RDD

¤ Invocation: rdd.take(2)

¤ Result: { 1, 2}

58



SLIDES CREATED BY: SHRIDEEP PALLICKARA L30.30

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L30.59

Examples: Basic actions on RDDs                              [5/7]

¨ Our RDD contains {1, 2, 3, 3}

¨ reduce(func)

¤ Combine the elements of the RDD together in parallel

¤ Invocation: rdd.reduce( (x,y) => x + y )

¤ Result: 9
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Examples: Basic actions on RDDs                              [6/7]

¨ Our RDD contains {1, 2, 3, 3}

¨ aggregate(zeroValue)(seqOp, combOp)

¤ Similar to reduce() but used to return a different type

¤ Invocation:
n rdd.aggregate ( (0,0))

((x,y) => (x._1 + y, x._2 + 1),
(x,y) => (x._1 + y._1, x._2 + y._2))

¤ Result: (9, 4)
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Examples: Basic actions on RDDs                              [7/7]

¨ Our RDD contains {1, 2, 3, 3}

¨ foreach(func)

¤ Apply the provided function to each element of the RDD

¤ Invocation: rdd.foreach(func)

¤ Result: Nothing
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Why persistence?

¨ Spark RDDs are lazily evaluated, and we may sometimes wish to use 
the same RDD multiple times
¤ Naively, Spark will recompute RDD and all of its dependencies each time 

we call an action on the RDD
n Super expensive for iterative algorithms

¨ To avoid recomputing RDD multiple times?
¤ Ask Spark to persist the data
¤ The nodes that compute the RDD, store the partitions
¤ E.g.: result.persist(StorageLevel.DISK_ONLY)
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Coping with failures

¨ If a node that has data persisted on it fails?
¤ Spark recomputes lost partitions of data when needed

¨ Also, replicate data on multiple nodes
¤ To handle node failures without slowdowns
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Persistence Levels for Spark

Level Space
Used

CPU 
time

In 
Memory

On 
disk

Comments

MEMORY_ONLY High Low Y N

MEMORY_ONLY_SER Low High Y N

MEMORY_AND_DISK High Medium Some Some Spills to disk if there is too 
much data to fit in memory

MEMORY_AND_DISK
_SER

Low High Some Some Spills to disk if there is too 
much data to fit in memory. 
Stores serialized 
representation in memory

DISK_ONLY Low High N Y
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What if you attempt to cache too much data that 
does not fit in memory?

¨ Spark will evict old partitions using a Least Recently Used Cache 
policy
¤ For memory only storage partitions, it will be recomputed the next time they 

are accessed
¤ For memory_and_disk ones? Write them out to disk

¨ RDDs also come with a method, unpersist()
¤ Manually remove data elements from the cache 
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The contents of this slide-set are based on the 
following references
¨ Learning Spark: Lightning-Fast Big Data Analysis.  1st Edition.  Holden Karau, Andy 

Konwinski, Patrick Wendell, and Matei Zaharia. O'Reilly. 2015. ISBN-13: 978-
1449358624. [Chapters 1-4]

¨ Karau, Holden; Warren, Rachel. High Performance Spark: Best Practices for Scaling 
and Optimizing Apache Spark. O'Reilly Media. 2017. ISBN-13: 978-1491943205. 
[Chapter 2]

¨ Chambers, Bill,Zaharia, Matei. Spark: The Definitive Guide: Big Data Processing 
Made Simple. O'Reilly Media. ISBN-13: 978-1491912218. 2018. [Chapters 1, 2, 
and 3].
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