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Frequently asked questions from the previous class 
survey

¨ Before an action is performed on an RDD it isn’t “stored”? Where is it? 
And for how long?

¨ Are there performance differences between Spark when writing 
programs in Scala or Java?

¨ Where are Spark lineage graphs stored?
¨ Are all transformations implemented using MapReduce under the 

hood?
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Topics covered in this lecture

¨ Actions on RDDs

¨ Pair RDDs
¨ Data Frames

3

COMPUTER SCIENCE DEPARTMENT

COMMON ACTIONS
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Actions on Basic RDDs

¨ reduce()
¤ Takes a function that operates on two elements in the RDD; returns an 

element of the same type
n E.g., of such an operation?   +  sums the RDD

sum = rdd.reduce((x,y) => x + y) 

¨ fold() takes a function with the same signature as reduce(), but 
also takes a “zero value” for initial call 
¤ “Zero value” is the identity element for initial call
¤ E.g., 0 for +, 1 for *, empty list for concatenation
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Both fold() and reduce() require return type of 
same type as the RDD elements

¨ The aggregate() removes that constraint
¤ For e.g., when computing a running average, maintain both the count so far 

and the number of elements
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Examples: Basic actions on RDDs                              [1/7]

¨ Our RDD contains {1, 2, 3, 3}

¨ collect()

¤ Return all elements from the RDD

¤ Invocation: rdd.collect()

¤ Result: {1, 2, 3, 3}
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Examples: Basic actions on RDDs                              [2/7]

¨ Our RDD contains {1, 2, 3, 3}

¨ count()

¤ Number of elements in the RDD

¤ Invocation: rdd.count()

¤ Result: 4
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Examples: Basic actions on RDDs                              [3/7]

¨ Our RDD contains {1, 2, 3, 3}

¨ countByValue()

¤ Number of times each element occurs in the RDD

¤ Invocation: rdd.countByValue()

¤ Result: { (1,1), (2,1), (3,2) }
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Examples: Basic actions on RDDs                              [4/7]

¨ Our RDD contains {1, 2, 3, 3}

¨ take(num)

¤ Return num elements from the RDD

¤ Invocation: rdd.take(2)

¤ Result: { 1, 2}
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Examples: Basic actions on RDDs                              [5/7]

¨ Our RDD contains {1, 2, 3, 3}

¨ reduce(func)

¤ Combine the elements of the RDD together in parallel

¤ Invocation: rdd.reduce( (x,y) => x + y )

¤ Result: 9
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Examples: Basic actions on RDDs                              [6/7]

¨ Our RDD contains {1, 2, 3, 3}

¨ aggregate(zeroValue)(seqOp, combOp)

¤ Similar to reduce() but used to return a different type

¤ Invocation:
n rdd.aggregate ( (0,0))

((x,y) => (x._1 + y, x._2 + 1),
(x,y) => (x._1 + y._1, x._2 + y._2))

¤ Result: (9, 4)
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Examples: Basic actions on RDDs                              [7/7]

¨ Our RDD contains {1, 2, 3, 3}

¨ foreach(func)

¤ Apply the provided function to each element of the RDD

¤ Invocation: rdd.foreach(func)

¤ Result: Nothing
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Why persistence?

¨ Spark RDDs are lazily evaluated, and we may sometimes wish to use 
the same RDD multiple times
¤ Naively, Spark will recompute RDD and all of its dependencies each time 

we call an action on the RDD
n Super expensive for iterative algorithms

¨ To avoid recomputing RDD multiple times?
¤ Ask Spark to persist the data
¤ The nodes that compute the RDD, store the partitions
¤ E.g.: result.persist(StorageLevel.DISK_ONLY)
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Coping with failures

¨ If a node that has data persisted on it fails?
¤ Spark recomputes lost partitions of data when needed

¨ Also, replicate data on multiple nodes
¤ To handle node failures without slowdowns
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Persistence Levels for Spark

Level Space
Used

Wall 
clock 
time

In 
Memory

On 
disk

Comments

MEMORY_ONLY High Low Y N

MEMORY_ONLY_SER Low High Y N

MEMORY_AND_DISK High Medium Some Some Spills to disk if there is too 
much data to fit in memory

MEMORY_AND_DISK
_SER

Low High Some Some Spills to disk if there is too 
much data to fit in memory. 
Stores serialized 
representation in memory

DISK_ONLY Low High N Y
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What if you attempt to cache too much data that 
does not fit in memory?

¨ Spark will evict old partitions using a Least Recently Used Cache 
policy
¤ For memory only storage partitions, it will be recomputed the next time they 

are accessed
¤ For memory_and_disk ones? Write them out to disk

¨ RDDs also come with a method, unpersist()
¤ Manually remove data elements from the cache 
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RDDs of key/value pairs

¨ Key/value RDDs are commonly used to perform aggregations
¤ Might have to do ETL (Extract, Transform, and Load) to get data into 

key/value formats

¨ Advanced feature to control layout of pair RDDs across nodes
¤ Partitioning
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RDDs containing key/value pairs

¨ Are called pair RDDs

¨ Useful building block in many programs
¤ Expose operations that allow actions on each key in parallel or regroup 

data across network
¤ reduceByKey() to aggregate data separately for each key
¤ join() to merge two RDDs together by grouping elements of the same key
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Creating Pair RDDs

¨ pairs=lines.map(lambda x:  (x.split(“ ”) )[0], x))

¤ Creates a pairRDD using the first word as the key
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TRANSFORMATIONS ON PAIR RDDS
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Transformations on Pair RDDs                   [1/5]

¨ Pair RDD = {(1,2), (3,4), (3,6) }

¨ reduceByKey(func)
¤ Combine values with the same key

¤ Invocation: rdd.reduceByKey((x, y) => x + y)

¤ Result: { (1, 2),  (3,10) }
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Transformations on Pair RDDs                   [2/5]

¨ Pair RDD = {(1,2), (3,4), (3,6) }

¨ groupByKey(func)
¤ Group values with the same key

¤ Invocation: rdd.groupByKey()

¤ Result: { (1, [2]),   (3, [4, 6])  }
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Transformations on Pair RDDs                   [3/5]

¨ Pair RDD = {(1,2), (3,4), (3,6) }

¨ mapValues(func)
¤ Apply function to each value of a pair RDD without changing the key

¤ Invocation: rdd.mapValues(x => x+1)

¤ Result: { (1, 3),   (3, 5) ,   (3, 7)  }
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Transformations on Pair RDDs                   [4/5]

¨ Pair RDD = {(1,2), (3,4), (3,6) }

¨ values()
¤ Return an RDD of just the values

¤ Invocation: rdd.values()

¤ Result: { 2, 4, 6 }
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Transformations on Pair RDDs                   [5/5]

¨ Pair RDD = {(1,2), (3,4), (3,6) }

¨ sortByKey()
¤ Return an RDD sorted by the key

¤ Invocation: rdd.sortByKey()

¤ Result: { (1,2),  (3,4),  (3,6 }
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Transformations on two Pair RDDs             [1/5]

¨ rdd = {(1,2), (3,4), (3,6) }      other = {(3,9)}

¨ subtractByKey()
¤ Remove elements with a key present in the other RDD

¤ Invocation: rdd.subtractByKey(other)

¤ Result: { (1,2) }
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Transformations on two Pair RDDs             [2/5]

¨ rdd = {(1,2), (3,4), (3,6) }      other = {(3,9)}

¨ join()
¤ Perform an inner join between two RDDs. Only keys that are present in both 

pair RDDs are output

¤ Invocation: rdd.join(other)

¤ Result: { (3, (4,9)) , (3, (6,9)) }
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Transformations on two Pair RDDs             [3/5]

¨ rdd = {(1,2), (3,4), (3,6) }      other = {(3,9)}

¨ leftOuterJoin()
¤ Perform a join between two RDDs where the key must be present in the first 

RDD

¤ Value associated with each key is a tuple of the value from the source and 
an Option for the value from the other pair RDD
n In python if a value is not present, None is used.

¤ Invocation: rdd.leftOuterJoin(other)

¤ Result: { (1, (2,None)) , (3, (4, 9)) ,  (3, (6, 9)) }

33

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L31.34

Transformations on two Pair RDDs             [4/5]

¨ rdd = {(1,2), (3,4), (3,6) }      other = {(3,9)}

¨ rightOuterJoin()
¤ Perform a join between two RDDs where the key must be present in the 
other RDD; 

¤ Tuple has an option for the source rather than other RDD

¤ Invocation: rdd.rightOuterJoin(other)

¤ Result: { (3, (4,9) ) ,  (3, (6,9)) }
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Transformations on two Pair RDDs             [5/5]

¨ rdd = {(1,2), (3,4), (3,6) }      other = {(3,9)}

¨ cogroup()
¤ Group data from both RDDs using the same key

¤ Invocation: rdd.cogroup(other)

¤ Result: { (1, ([2],[])) , (3, ([4, 6], [9])) }
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Example of chaining operations:
Calculation of per-key average

key value

panda 0

pink 3

pirate 3

panda 1

pink 4

key value

panda (0, 1)

pink (3, 1)

pirate (3, 1)

panda (1, 1)

pink (4, 1)

mapValues

key value

panda (1, 2)

pink (7, 2)

pirate (3, 1)

reduceByKey

rdd.mapValues(x=> (x, 1)).reduceByKey( (x,y) => (x._1 + y._1, x._2 + y._2))
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A word count example

¨ We are using flatMap() to produce a pair RDD of words and the 
number 1

rdd = sc.textfile(“s3://…”)

words = rdd.flatMap(lambda x: x.split(“ ”))

result = words.map(lambda x: (x,1)).
reduceByKey(lambda x, y: x+y)
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Spark DataFrame

¨ DataFrames consist of
¤ A series of records (like rows in a table) that are of type Row
¤ A number of columns (like columns in a spreadsheet)

¨ Rows
¤ You can create rows by manually instantiating a Row object with the values 

that belong in each column

¨ Columns
¤ You can select, manipulate, and remove columns from DataFrames and 

these operations are represented as expressions
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Schemas

¨ A schema defines the column names and types of a DataFrame

¨ You can let a data source define the schema (called schema-on-read) 
or define it explicitly

¨ Note that only DataFrames have schemas
¤ Rows themselves do not have schemas 
¤ If you create a Row manually? 

n You must specify the values in the same order as the schema of the DataFrame to 
which they might be appended
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We can create DataFrames from raw data sources

¨ Spark has six “core” data sources 
¤ CSV
¤ JSON
¤ Parquet
¤ ORC: Apache Optimized Row Columnar (ORC) file format
¤ JDBC/ODBC connections
¤ Plain-text files

¨ Hundreds of external data sources written by the community
¤ E.g.: Cassandra, HBase, MongoDB, AWS, Redshift, XML etc.
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The foundation for reading data in Spark is the 
DataFrameReader

¨ We access this through the SparkSession via the read attribute: 
spark.read

¨ After we have a DataFrame reader, we specify several values: 
¤ The format: Input data source format

¤ The schema 
¤ The read mode {Permissive, DropMalformed, Failfast}

¤ A series of options 

¨ The format, options, and schema each return a DataFrameReader
that can undergo further transformations and are all optional
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However, at a minimum, the DataFrameReader
must have a path from which to read

spark.read.format("csv")
.option("mode", "FAILFAST")
.option("inferSchema", "true")
.option("path", "path/to/file(s)")
.schema(someSchema)
.load() 
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Writing data is quite similar to that of reading data 

¨ Instead of the DataFrameReader , we have the DataFrameWriter

¨ We access the DataFrameWriter on a per-DataFrame basis via 
the write attribute: 

dataFrame.write 
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Writing Data

¨ After we have a DataFrameWriter, we specify three values: 
¤ The format, a series of options, and the save mode

¨ At a minimum, you must supply a path. 
¨ Options may vary from data source to data source. 

dataframe.write.format( "csv" ) 
               .option("mode", "APPEND")
               .option("dateFormat", "yyyy-MM-dd" ) 
               .option ("path", "path/to/file(s)" )
               .save () 
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You can make any DataFrame into a table or view

¨ Done via a simple method call: createOrReplaceTempView

¨ This then allows you to query the data using SQL

val df = spark.read
              .format("json" )
              .load("/data/flight-data/json/2022-summary.json") 

df.createOrReplaceTempView("dfTable") 
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DataFrame transformations

¨ Add rows or columns

¨ Remove rows or columns
¨ Transform a row into a column (or vice versa)

¨ Change the order of rows based on the values in columns
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Adding Columns

¨ Use the withColumn method on the DataFrame

¨ For example, let’s add a column that just adds the number one as a 
column: 

df.withColumn("numberOne", lit(1)) 
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Renaming Columns

¨ Done using the withColumnRenamed method. 

¨ Will rename the column with the name of the string in the first 
argument to the string in the second argument: 

df.withColumnRenamed ("DEST_COUNTRY_NAME","dest")
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Removing Columns

¨ Done using a method called drop
df.drop("ORIGIN_COUNTRY_NAME" )

¨ We can drop multiple columns by passing in multiple columns as 
arguments

dfWithLongColName.drop("ORIGIN_COUNTRY_NAME",
"DEST_COUNTRY_NAME") 
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Filtering Rows

¨ To filter rows, we create an expression that evaluates to true or false 
¤ Those rows where the expression evaluates to false are filtered out

df.filter( col( "count" ) < 2)
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Getting Unique Rows

¨ A very common use case is to extract the unique or distinct values in a 
DataFrame
¤ These values can be in one or more columns
¤ Done by using the distinct method on a DataFrame

n Allows deduplication of any rows that are in that DataFrame. 

¤ Again, this is a transformation that will return a new DataFrame with only 
unique rows: 

df.select("ORIGIN_COUNTRY_NAME","DEST_COUNTRY_NAME")
.distinct()
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Random Samples 

¨ You might want to sample some random records from a DataFrame

¨ Done by using the sample method on a DataFrame
¤ Specify a fraction of rows to extract from a DataFrame and whether the 

sample will be with or without replacement

val seed = 5 
val withReplacement = false 
val fraction = 0.5 

df.sample(withReplacement, fraction, seed )

53

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L31.54

Random Splits

¨ Random splits are helpful when you need to break up a DataFrame
into a random “splits” of the original DataFrame

¨ Often used with machine learning algorithms to create training, 
validation, and test sets 

val dataFrames = 

df.randomSplit(Array (0.25, 0.75 ), seed )
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Column Manipulations                              [1/4]

¨ withColumn(columnName, func)

¤ Return an Dataframe with the additional column

¤ Invocation: df.withColumn(“dogYears”, df.age / 7)

¨ dropColumn(columnName)

¤ Return an Dataframe without the column

¤ Invocation: df.dropColumn(“age”)
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Column Manipulations                              [2/4]

¨ select(columnNames)
¤ Return an DataFrame with the specified columns

¤ Invocation: df.select(“firstName”, “age”)

¨ describe(columnName)
¤ Compute summary statistics over DataFrame columns

¤ Invocation: df.describe(“age”), df.describe()
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Column Manipulations                              [3/4]

val df = Seq(

(“Peterson”, “Marcus”, 54),

(“Batey”, “Edward”, 36),

(“Bruce”, "Karen", 35)

).toDF("lastName", “firstName”, "age”)

df.withColumn(“dogYears”, df.age / 7.0)

df.describe(“age”, “dogYears”)
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Column Manipulations                              [4/4]

+-------+---------+---------+

    |summary|      age| dogYears|

    +-------+---------+---------+

    |  count|        3|        3|

    |   mean|  41.6667|  5.95238|

    | stddev| 10.69268|  1.52753|

    |    min|       35|        5|

    |    max|       54| 7.714286|

    +-------+---------+---------+
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Dataframe joins

¨ join(other, <columnComparison>, <joinType>)

¤ Performs a join between 2 Dataframes

¤ Invocation: df1.join(df2, Seq(“id”))
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Join column comparison

¨ Supports a variety of criteria
¤ Sequence of column names (e.g., Seq(“id”, “age”))

¤ Elaborate comparison definitions (e.g., df1(“age”) >= df2(“age”))
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Join Type

¨ DataFrames may perform multiple styles of join
¤ Inner: typical dataset join with key-to-key match

¤ Outer, left-outer, right-outer: result contains all rows, filling in columns with 
‘null’ values where data doesn’t exist

¤ Left-semi, right-semi: similar to outer join, but result only contains rows in 
specified source dataset
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Example: Spark SQL

val df = Seq(
(“Peterson”, “Marcus”, 54),

(“Batey”, “Edward”, 36),

(“Bruce”, "Karen", 35)

).toDF("lastName", “firstName”, "age”)

df.createOrReplaceTempView(“people”)

spark.sql(“SELECT firstName, age, age / 7.0 as dogYears

FROM people where age < 50”)

62



SLIDES CREATED BY: SHRIDEEP PALLICKARA L31.32

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L31.63

The contents of this slide-set are based on the 
following references
¨ Learning Spark: Lightning-Fast Big Data Analysis.  1st Edition.  Holden Karau, Andy 

Konwinski, Patrick Wendell, and Matei Zaharia. O'Reilly. 2015. ISBN-13: 978-
1449358624. [Chapters 1-4, 10]

¨ Chambers, Bill, and Zaharia, Matei. Spark: The Definitive Guide: Big Data Processing 
Made Simple. O'Reilly Media. ISBN-13: 978-1491912218. 2018. [Chapters 5 and 
9].

¨ SQL Joins: https://www.w3schools.com/sql/sql_join.asp

¨ Karau, Holden; Warren, Rachel. High Performance Spark: Best Practices for Scaling 
and Optimizing Apache Spark. O'Reilly Media. 2017. ISBN-13: 978-1491943205. 
[Chapter 2]

63

https://www.w3schools.com/sql/sql_join.asp

