
SLIDES CREATED BY: SHRIDEEP PALLICKARA L32.1

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CS X55: DISTRIBUTED SYSTEMS [SPARK]

Shrideep Pallickara
Computer Science

Colorado State University

Transformations: Narrow and Wide
Though their numbers are few
 Don’t let them beguile you
Innocuous though
 they may seem
The wrong invocation
 Is all it takes
To amplify inefficiencies
 And protract computations

1

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.2

Frequently asked questions from the previous class
survey

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L32.2

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.3

Topics covered in this lecture

¨ Data Frames
¤ Column manipulations

¨ Orchestration Plans

3

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.4

Column Manipulations [1/4]

¨ withColumn(columnName, func)

¤ Return a Dataframe with the additional column

¤ Invocation: df.withColumn(“dogYears”, df.age / 7)

¨ dropColumn(columnName)

¤ Return a Dataframe without the column

¤ Invocation: df.dropColumn(“age”)

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L32.3

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.5

Column Manipulations [2/4]

¨ select(columnNames)
¤ Return a DataFrame with the specified columns

¤ Invocation: df.select(“firstName”, “age”)

¨ describe(columnName)
¤ Compute summary statistics over DataFrame columns

¤ Invocation: df.describe(“age”), df.describe()

5

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.6

Column Manipulations [3/4]

val df = Seq(

(“Peterson”, “Marcus”, 54),

(“Batey”, “Edward”, 36),

(“Bruce”, "Karen", 35)

).toDF("lastName", “firstName”, "age”)

df.withColumn(“dogYears”, df.age / 7.0)

df.describe(“age”, “dogYears”)

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L32.4

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.7

Column Manipulations [4/4]

+-------+---------+---------+

 |summary| age| dogYears|

 +-------+---------+---------+

 | count| 3| 3|

 | mean| 41.6667| 5.95238|

 | stddev| 10.69268| 1.52753|

 | min| 35| 5|

 | max| 54| 7.714286|

 +-------+---------+---------+

7

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.8

Dataframe joins

¨ join(other, <columnComparison>, <joinType>)

¤ Performs a join between 2 Dataframes

¤ Invocation: df1.join(df2, Seq(“id”))

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L32.5

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.9

Join column comparison

¨ Supports a variety of criteria
¤ Sequence of column names (e.g., Seq(“id”, “age”))

¤ Elaborate comparison definitions (e.g., df1(“age”) >= df2(“age”))

9

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.10

Join Type

¨ DataFrames may perform multiple styles of join
¤ Inner: typical dataset join with key-to-key match

¤ Outer, left-outer, right-outer: result contains all rows, filling in columns with
‘null’ values where data doesn’t exist

¤ Left-semi, right-semi: similar to outer join, but result only contains rows in
specified source dataset

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L32.6

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.11

Example: Spark SQL

val df = Seq(
(“Peterson”, “Marcus”, 54),

(“Batey”, “Edward”, 36),

(“Bruce”, "Karen", 35)

).toDF("lastName", “firstName”, "age”)

df.createOrReplaceTempView(“people”)

spark.sql(“SELECT firstName, age, age / 7.0 as dogYears

FROM people where age < 50”)

11

COMPUTER SCIENCE DEPARTMENTTUNING THE LEVEL OF PARALLELISM
12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L32.7

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.13

Tuning the level of parallelism

¨ Every RDD has a fixed number of partitions
¤ Determine the degree of parallelism when executing operations

¨ During aggregations or grouping operations, you can ask Spark to use
a specific number of partitions
¤ This will override defaults that Spark uses

13

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.14

Example: Tuning the level of parallelism

data = [(“a”, 3), (“b”, 4), (“a”, 1)]

sc.parallelize(data).
reduceByKey(lambda x, y: x + y) #default

sc.parallelize(data).
reduceByKey(lambda x, y: x + y, 10) #Custom

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L32.8

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.15

What if you want to tune parallelism outside of grouping
and aggregation operations?

¨ There is repartition()
¤ Shuffles data across the network to create a new set of partitions
¤ Very expensive operation!

¨ There is the coalesce() operation
¤ Allows avoiding data movement

n But only if you are decreasing the number of partitions

¤ Check rdd.getNumPartitions() and make sure you are coalescing to
fewer partitions than current

15

COMPUTER SCIENCE DEPARTMENT

DATASETS VS DATAFRAMES
October 5, 2021

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L32.9

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.17

Datasets vs DataFrames

October 5, 2021

¨ In Spark’s supported languages, Datasets make sense only in Java and
Scala, whereas in Python and R only DataFrames make sense

¨ This is because Python and R are not compile-time type-safe
¤ types are dynamically inferred or assigned during execution, not during

compile time

¨ The reverse is true in Scala and Java: types are bound to variables
and objects at compile time

17

COMPUTER SCIENCE DEPARTMENT

ORCHESTRATION PLANS

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L32.10

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.19

Executing Spark code in clusters: Overview

October 5, 2021

¨ Write DataFrame/Dataset/SQL Code

¨ If the code is valid, Spark converts this to a Logical Plan

¨ Spark transforms this Logical Plan to a Physical Plan, checking for
optimizations along the way

¨ Spark then executes this Physical Plan (which involves RDD
manipulations) on the cluster

19

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.20

Once you have the code ready

¨ Code is submitted either through the console or via a submitted job

¨ This code passes through the Catalyst Optimizer
¤ Decides how the code should be executed
¤ Lays out a plan for doing so before, finally, the code is run

n And the result returned to the user

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L32.11

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.21

The Catalyst Optimizer

SQL

DataFrames

Datasets

Catalyst
Optimizer

Physical Plan

21

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.22

Logical Planning

¨ The logical plan only represents a set of abstract transformations
¤ Does not refer to executors or drivers
¤ Simply converts the user’s set of expressions into the most optimized version

¨ Converting user’s code into an unresolved logical plan
¤ This plan is unresolved because although your code might be valid, the

tables or columns that it refers to might or might not exist

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L32.12

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.23

How are columns and tables resolved?

¨ Spark uses the catalog, a repository of all table and DataFrame
information, to resolve columns and tables in the analyzer optimizations

¨ The analyzer might reject the unresolved logical plan if the required
table or column name does not exist in the catalog

¨ If the analyzer can resolve it, the result is passed through the Catalyst
Optimizer

23

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.24

The Structured API Logical Planning Process

User
Code

Unresolved
Logical Plan

Catalog

Resolved
logical plan

Optimized
logical plan

Analysis
Logical
Optimization

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L32.13

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.25

Catalyst Optimizer

¨ A collection of rules that attempt to optimize the logical plan by
pushing down predicates or selections

¨ Catalyst is extensible
¤ Users can include their own rules for domain-specific optimizations

25

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.26

Physical Planning [1/2]

¨ The physical plan specifies how the logical plan will execute on the
cluster

¨ Involves generating different physical execution strategies and
comparing them through a cost model

¨ An example of the cost comparison might be choosing how to perform
a given join by looking at the physical attributes of a given table
¤ How big the table is or
¤ How big its partitions are

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L32.14

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.27

Physical Planning [2/2]

¨ Physical planning results in a series of RDDs and transformations

¨ This is why Spark is also referred to as a compiler
¤ Takes queries in DataFrames, Datasets, and SQL and compiles them into

RDD transformations

27

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.28

The Physical Planning Process

Physical
Plans

Optimized
Logical Plan

Cost
Model Best Physical

Plan

Executed on the
cluster

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L32.15

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.29

Execution

¨ Spark performs further optimizations at runtime

¨ Generating native Java bytecode that can remove entire tasks or
stages during execution

¨ Finally, the result is returned to the user

29

COMPUTER SCIENCE DEPARTMENT

WIDE AND NARROW
TRANSFORMATIONS

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L32.16

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.31

Transformations and Dependencies

¨ Two categories of dependencies
¤ Narrow

n Each partition of the parent RDD is used by at most one partition of the child RDD

¤ Wide
n Multiple child RDD partitions may depend on a single parent RDD partition

¨ The narrow versus wide distinction has significant implications for the
way Spark evaluates a transformation and …
¤ consequently, for its performance

31

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.32

Narrow Transformations

¨ Narrow transformations are those in which each partition in the child RDD
has simple, finite dependencies on partitions in the parent RDD

¨ Dependencies can be determined at design time, irrespective of the values
of the records in the parent partitions

¨ Partitions in narrow transformations can either depend on:
¤ One parent (such as in the map operator), or
¤ A unique subset of the parent partitions that is known at design time (coalesce)

¨ Narrow transformations can be executed on an arbitrary subset of the data
without any information about the other partitions.

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L32.17

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.33

Dependencies between partitions for narrow
transformations

PARENT

CHILD

33

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.34

Wide Transformations

¨ Transformations with wide dependencies cannot be executed on
arbitrary rows

¨ Require the data to be partitioned in a particular way, e.g., according
the value of their key
¤ In sort, for example, records have to be partitioned so that keys in the same

range are on the same partition

¨ Transformations with wide dependencies include sort, reduceByKey,
groupByKey, join, and anything that calls the rePartition function

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L32.18

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.35

Dependencies between partitions for wide
transformations

PARENT

CHILD

Wide dependencies cannot be known fully before the data is evaluated

The dependency graph for any operations that cause a shuffle (such as groupByKey,

reduceByKey, sort, and sortByKey) follows this pattern

35

COMPUTER SCIENCE DEPARTMENT

PAIR RDDS: WHAT TO WATCH FOR

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L32.19

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.37

Despite their utility, key/value operations can lead
to a number of performance issues

¨ Most expensive operations in Spark fit into the key/value pair
paradigm
¤ Because most wide transformations are key/ value transformations,

n And most require some fine tuning and care to be performant

37

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.38

In particular, operations on key/value pairs can
cause …

1. Out-of-memory errors in the driver

2. Out-of-memory errors on the executor nodes
3. Shuffle failures

4. “Straggler tasks” or partitions, which are especially slow to compute

¨ The last three performance issues are all most often caused by
shuffles associated with the wide transformations

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L32.20

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.39

Memory errors in the driver, are usually caused by
actions

¨ Several key/value actions (including countByKey, countByValue,
lookUp, and collectAsMap) return data to the driver

¨ In most instances they return unbounded data since the number of keys
and the number of values are unknown

¨ In addition to number of records, the size of each record is an
important factor in causing memory errors

39

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.40

Preventing out-of-memory errors with aggregation
operations [1/2]

¨ combineByKey and all of the aggregation operators built on top of it
(reduceByKey, foldLeft, foldRight, aggregateByKey) may
lead to memory errors if they cause the accumulator to become too
large for one key

¨ What about groupByKey?
¤ It is actually implemented using combineByKey where the accumulator is

an iterator with all the data.

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L32.21

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.41

Preventing out-of-memory errors with aggregation
operations [2/2]
¨ Use functions that implement map-side combinations

¤ Meaning that records with the same key are combined before they are
shuffled

¤ This can greatly reduce the shuffled read

¨ The following four functions are implemented to use map-side
combinations
¤ reduceByKey
¤ treeAggregate
¤ aggregateByKey
¤ foldByKey

41

SPARKCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L32.42

The contents of this slide-set are based on the
following references
¨ Learning Spark: Lightning-Fast Big Data Analysis. 1st Edition. Holden Karau, Andy

Konwinski, Patrick Wendell, and Matei Zaharia. O'Reilly. 2015. ISBN-13: 978-
1449358624. [Chapters 1-4, 10]

¨ Chambers, Bill, and Zaharia, Matei. Spark: The Definitive Guide: Big Data Processing
Made Simple. O'Reilly Media. ISBN-13: 978-1491912218. 2018. [Chapters 5 and
9].

¨ Karau, Holden; Warren, Rachel. High Performance Spark: Best Practices for Scaling
and Optimizing Apache Spark. O'Reilly Media. 2017. ISBN-13: 978-1491943205.
[Chapter 2]

42

