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Transformations: Narrow and Wide
Though their numbers are few
    Don’t let them beguile you
Innocuous though 
        they may seem
The wrong invocation 
               Is all it takes 
To amplify inefficiencies 
    And protract computations
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Frequently asked questions from the previous class 
survey
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Topics covered in this lecture

¨ Data Frames
¤ Column manipulations

¨ Orchestration Plans
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Column Manipulations                              [1/4]

¨ withColumn(columnName, func)

¤ Return a Dataframe with the additional column

¤ Invocation: df.withColumn(“dogYears”, df.age / 7)

¨ dropColumn(columnName)

¤ Return a Dataframe without the column

¤ Invocation: df.dropColumn(“age”)
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Column Manipulations                              [2/4]

¨ select(columnNames)
¤ Return a DataFrame with the specified columns

¤ Invocation: df.select(“firstName”, “age”)

¨ describe(columnName)
¤ Compute summary statistics over DataFrame columns

¤ Invocation: df.describe(“age”), df.describe()
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Column Manipulations                              [3/4]

val df = Seq(

(“Peterson”, “Marcus”, 54),

(“Batey”, “Edward”, 36),

(“Bruce”, "Karen", 35)

).toDF("lastName", “firstName”, "age”)

df.withColumn(“dogYears”, df.age / 7.0)

df.describe(“age”, “dogYears”)
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Column Manipulations                              [4/4]

+-------+---------+---------+

    |summary|      age| dogYears|

    +-------+---------+---------+

    |  count|        3|        3|

    |   mean|  41.6667|  5.95238|

    | stddev| 10.69268|  1.52753|

    |    min|       35|        5|

    |    max|       54| 7.714286|

    +-------+---------+---------+
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Dataframe joins

¨ join(other, <columnComparison>, <joinType>)

¤ Performs a join between 2 Dataframes

¤ Invocation: df1.join(df2, Seq(“id”))
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Join column comparison

¨ Supports a variety of criteria
¤ Sequence of column names (e.g., Seq(“id”, “age”))

¤ Elaborate comparison definitions (e.g., df1(“age”) >= df2(“age”))
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Join Type

¨ DataFrames may perform multiple styles of join
¤ Inner: typical dataset join with key-to-key match

¤ Outer, left-outer, right-outer: result contains all rows, filling in columns with 
‘null’ values where data doesn’t exist

¤ Left-semi, right-semi: similar to outer join, but result only contains rows in 
specified source dataset
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Example: Spark SQL

val df = Seq(
(“Peterson”, “Marcus”, 54),

(“Batey”, “Edward”, 36),

(“Bruce”, "Karen", 35)

).toDF("lastName", “firstName”, "age”)

df.createOrReplaceTempView(“people”)

spark.sql(“SELECT firstName, age, age / 7.0 as dogYears

FROM people where age < 50”)
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Tuning the level of parallelism

¨ Every RDD has a fixed number of partitions
¤ Determine the degree of parallelism when executing operations

¨ During aggregations or grouping operations, you can ask Spark to use 
a specific number of partitions
¤ This will override defaults that Spark uses
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Example: Tuning the level of parallelism

data = [(“a”, 3), (“b”, 4), (“a”, 1)]

sc.parallelize(data).
reduceByKey(lambda x, y: x + y) #default

sc.parallelize(data).
reduceByKey(lambda x, y: x + y, 10) #Custom
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What if you want to tune parallelism outside of grouping 
and aggregation operations?

¨ There is repartition()
¤ Shuffles data across the network to create a new set of partitions
¤ Very expensive operation! 

¨ There is the coalesce() operation
¤ Allows avoiding data movement

n But only if you are decreasing the number of partitions

¤ Check rdd.getNumPartitions() and make sure you are coalescing to 
fewer partitions than current
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DATASETS VS DATAFRAMES
October 5, 2021
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Datasets vs DataFrames

October 5, 2021

¨ In Spark’s supported languages, Datasets make sense only in Java and 
Scala, whereas in Python and R only DataFrames make sense 

¨ This is because Python and R are not compile-time type-safe
¤ types are dynamically inferred or assigned during execution, not during 

compile time

¨ The reverse is true in Scala and Java: types are bound to variables 
and objects at compile time 
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ORCHESTRATION PLANS
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Executing Spark code in clusters: Overview

October 5, 2021

¨ Write DataFrame/Dataset/SQL Code

¨ If the code is valid, Spark converts this to a Logical Plan

¨ Spark transforms this Logical Plan to a Physical Plan, checking for 
optimizations along the way

¨ Spark then executes this Physical Plan (which involves RDD 
manipulations) on the cluster
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Once you have the code ready

¨ Code is submitted either through the console or via a submitted job

¨ This code passes through the Catalyst Optimizer
¤ Decides how the code should be executed 
¤ Lays out a plan for doing so before, finally, the code is run 

n And the result returned to the user 
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The Catalyst Optimizer

SQL

DataFrames

Datasets

Catalyst 
Optimizer

Physical Plan
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Logical Planning

¨ The logical plan only represents a set of abstract transformations 
¤ Does not refer to executors or drivers
¤ Simply converts the user’s set of expressions into the most optimized version

¨ Converting user’s code into an unresolved logical plan
¤ This plan is unresolved because although your code might be valid, the 

tables or columns that it refers to might or might not exist
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How are columns and tables resolved?

¨ Spark uses the catalog, a repository of all table and DataFrame
information, to resolve columns and tables in the analyzer optimizations

¨ The analyzer might reject the unresolved logical plan if the required 
table or column name does not exist in the catalog

¨ If the analyzer can resolve it, the result is passed through the Catalyst 
Optimizer
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The Structured API Logical Planning Process

User 
Code

Unresolved 
Logical Plan

Catalog

Resolved 
logical plan

Optimized 
logical plan

Analysis
Logical 
Optimization
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Catalyst Optimizer

¨ A collection of rules that attempt to optimize the logical plan by 
pushing down predicates or selections

¨ Catalyst is extensible
¤ Users can include their own rules for domain-specific optimizations
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Physical Planning                                     [1/2]

¨ The physical plan specifies how the logical plan will execute on the 
cluster

¨ Involves generating different physical execution strategies and 
comparing them through a cost model

¨ An example of the cost comparison might be choosing how to perform 
a given join by looking at the physical attributes of a given table 
¤ How big the table is or 
¤ How big its partitions are 
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Physical Planning                                     [2/2]

¨ Physical planning results in a series of RDDs and transformations

¨ This is why Spark is also referred to as a compiler 
¤ Takes queries in DataFrames, Datasets, and SQL and compiles them into 

RDD transformations
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The Physical Planning Process

Physical 
Plans

Optimized 
Logical Plan

Cost 
Model Best Physical

Plan

Executed on the
cluster
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Execution

¨ Spark performs further optimizations at runtime

¨ Generating native Java bytecode that can remove entire tasks or 
stages during execution

¨ Finally, the result is returned to the user
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WIDE AND NARROW
TRANSFORMATIONS
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Transformations and Dependencies

¨ Two categories of dependencies
¤ Narrow

n Each partition of the parent RDD is used by at most one partition of the child RDD

¤ Wide
n Multiple child RDD partitions may depend on a single parent RDD partition

¨ The narrow versus wide distinction has significant implications for the 
way Spark evaluates a transformation and … 
¤ consequently, for its performance
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Narrow Transformations

¨ Narrow transformations are those in which each partition in the child RDD 
has simple, finite dependencies on partitions in the parent RDD

¨ Dependencies can be determined at design time, irrespective of the values 
of the records in the parent partitions

¨ Partitions in narrow transformations can either depend on:
¤ One parent (such as in the map operator), or 
¤ A unique subset of the parent partitions that is known at design time (coalesce) 

¨ Narrow transformations can be executed on an arbitrary subset of the data 
without any information about the other partitions.
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Dependencies between partitions for narrow
transformations

PARENT

CHILD
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Wide Transformations

¨ Transformations with wide dependencies cannot be executed on 
arbitrary rows 

¨ Require the data to be partitioned in a particular way, e.g., according 
the value of their key
¤ In sort, for example, records have to be partitioned so that keys in the same 

range are on the same partition

¨ Transformations with wide dependencies include sort, reduceByKey, 
groupByKey, join, and anything that calls the rePartition function
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Dependencies between partitions for wide 
transformations

PARENT

CHILD

Wide dependencies cannot be known fully before the data is evaluated

The dependency graph for any operations that cause a shuffle (such as groupByKey, 

reduceByKey, sort, and sortByKey) follows this pattern
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Despite their utility,  key/value operations can lead 
to a number of performance issues

¨ Most expensive operations in Spark fit into the key/value pair 
paradigm 
¤ Because most wide transformations are key/ value transformations, 

n And most require some fine tuning and care to be performant
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In particular, operations on key/value pairs can 
cause …

1. Out-of-memory errors in the driver 

2. Out-of-memory errors on the executor nodes 
3. Shuffle failures

4. “Straggler tasks” or partitions, which are especially slow to compute

¨ The last three performance issues are all most often caused by 
shuffles associated with the wide transformations
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Memory errors in the driver, are usually caused by 
actions

¨ Several key/value actions (including countByKey, countByValue, 
lookUp, and collectAsMap) return data to the driver

¨ In most instances they return unbounded data since the number of keys 
and the number of values are unknown

¨ In addition to number of records, the size of each record is an 
important factor in causing memory errors
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Preventing out-of-memory errors with aggregation 
operations                                                  [1/2]

¨ combineByKey and all of the aggregation operators built on top of it 
(reduceByKey, foldLeft, foldRight, aggregateByKey) may 
lead to memory errors if they cause the accumulator to become too 
large for one key

¨ What about groupByKey?
¤ It is actually implemented using combineByKey where the accumulator is 

an iterator with all the data.
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Preventing out-of-memory errors with aggregation 
operations                                                  [2/2]
¨ Use functions that implement map-side combinations

¤ Meaning that records with the same key are combined before they are 
shuffled

¤ This can greatly reduce the shuffled read

¨ The following four functions are implemented to use map-side 
combinations 
¤ reduceByKey
¤ treeAggregate
¤ aggregateByKey
¤ foldByKey
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The contents of this slide-set are based on the 
following references
¨ Learning Spark: Lightning-Fast Big Data Analysis.  1st Edition.  Holden Karau, Andy 

Konwinski, Patrick Wendell, and Matei Zaharia. O'Reilly. 2015. ISBN-13: 978-
1449358624. [Chapters 1-4, 10]

¨ Chambers, Bill, and Zaharia, Matei. Spark: The Definitive Guide: Big Data Processing 
Made Simple. O'Reilly Media. ISBN-13: 978-1491912218. 2018. [Chapters 5 and 
9].

¨ Karau, Holden; Warren, Rachel. High Performance Spark: Best Practices for Scaling 
and Optimizing Apache Spark. O'Reilly Media. 2017. ISBN-13: 978-1491943205. 
[Chapter 2]
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