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Topics covered in this lecture
Spark Streaming

Performance considerations
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Batch size

batch size

Window size

Performance considerations

500 milliseconds is considered a good minimum size

If processing times remain consistent, explore decreasing the batch size

If the processing times increase? You have reached the limit

Has a great impact on performance

Consider increasing this for expensive operations
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Start with a large batch size (~10 seconds) and work down to a smaller

L33-B.4

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L33-B.2



CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Garbage collections and memory usage

Cache RDDs in serialized form

Using Kryo for serialization reduces this even more

Reduces space for in-memory representations

By default, Spark uses an in-memory cache

Can also evict RDDs older than a certain time-period
spark.cleaner.ttl

This preemptive eviction of RDDs also reduces the garbage collection pressure
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Levels of parallelism in data receiving [1/4]

Each input DStream creates a single receiver that receives a single
stream of data
Receiving multiple data streams possible by creating multiple input
DStreams

Each Dstream must be configured to receive different partitions of the data stream
from the source(s)

For a Kafka DStream receiving data on two topics?

Split into two DStreams each receiving one topic

Two receivers would run and receive data in parallel
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Levels of parallelism in data receiving [2/4]

Another approach is to tune the receiver’s block interval

Determined by spark.streaming.blockInterval

For most receivers, received data is coalesced into blocks of data
before storing in memory

The number of blocks in each batch determines the number of tasks
used to process the received data in a map-like transformation

Number of tasks per batch?

Batch interval /block interval
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Levels of parallelism in data receiving [3/4]

Number of tasks per batch?

Batch interval /block interval
Block interval of 200 ms will create 10 tasks per 2 second batches

If the number of tasks is too low?

All available cores might not be available to use all the data

To increase number of tasks for a given batch interval?

Reduce the block interval
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Levels of parallelism in data receiving [4/4]

What if you did not want to receive data with multiple input streams?
Explicitly repartition the input data stream

Repartitioning is done using the inputstream.repartition (<number of

partitions>))

Distributes the received batches of data across the specified number of
machines in the cluster before further processing
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Data serialization [1/2]

Data received through receivers is stored with
Storageleve MEMORY_AND_DISK_SER_2

Data that does not fit in memory spills over to disk

Input data and persisted RDDs generated by DStream transformations
are automatically cleared
If you are using a window operation of 10 minutes, then Spark Streaming
will keep the last 10 minutes of data, and actively throw away older data

Data can be retained for a longer duration by setting
streamingContext.remember
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Data serialization [2/2]

RDDs generated by streaming computations may be persisted in
memory

Persisted RDDs generated by streaming computations are persisted with
Storagelevel. MEMORY_ONLY_SER

If you are using batch intervals of a few seconds and no window

operations?

You can try disabling serialization in persisted data

Reduce CPU overheads due to serialization, without excessive GC overhead:s.

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY  CopmpyteR SCIENCE DEPARTMENT SPARK STREAMING L33-B.11

11

PROCESSING TWITTER STREAMS USING SPARK
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Spark-streaming example

Step-1: Create a SparkStream context and Twitter credential setup

SparkConf sparkConf = new SparkConf () .setAppName ("Spark-
streaming-twitter-trends");

/*
Twitter authentication details .. [Not included here]
*/
//JavaStreamigContext
JavaStreamingContext jssc =
new JavaStreamingContext (sparkConf, new Duration (1000));

//Discretized stream of tweets
JavaDStream<Status> twitterStream = (JavaDStream<Status>)
TwitterUtils.createStream(Jjssc);

COLORADOD ST.
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[1/5]

Step-by-step approach to finding the top 10 hashtags from a stream of tweets using
counts [Every second there is an output over data from the last 300 seconds]
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Spark-streaming example

Step-2: Map Input DStream of Status to String

//Discretized stream of Strings
JavaDStream<String> statuses = twitterStream.map (
new Function<Status, String>() {
public String call (Status status) {
return status.getText();
}

}
)i

statuses.print () ;
//trigger the execution of code

jssc.start();
jssc.awaitTermination () ;
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Spark-streaming example [3/5]
|

01 Step-3: Stream of hashtags from stream of tweets
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Spark-streaming example [4/5]

01 Step-4: Count the hashtag over 5 min window
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Spark-streaming example

Step-5: Find top 10 hashtags according to counts

new PairFunction<Tuple2<String, Integer>, Integer,

return input.swap() ;

)i

throws Exception {
return input.sortByKey (false) ;

Ph) i

String out = "\nTrending hashtags:\n";
for (Tuple2<Integer, String> t: rdd.take(10))
out = out + t.toString() + "\n";

}
System.out.println (out) ;

COLORAD return null;}});

JavaPairDStream<Integer, String> swapCounts = counts.mapToPair (

String> () {

public Tuple2<Integer, String> call (Tuple2<String, Integer> input)

JavaPairDStream<Integer, String> sortedCount = swapCounts.transformToPair (
new Function<JavaPairRDD<Integer, String>,JavaPairRDD<Integer, String>>() {
public JavaPairRDD<Integer, String> call (JavaPairRDD<Integer, String> input)

sortedCount.foreach (new Function<JavaPairRDD<Integer, String>, Void> () {
public Void call (JavaPairRDD<Integer, String> rdd) {

{

L33-B.17
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The contents of this slide-set are
following references

1449358624.
[Chapter 10]

Spark Streaming Programming Guide:

tuning

Processing Twitter Streams using Spark:

streaming.html
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Learning Spark: Lightning-Fast Big Data Analysis. 1st Edition. Holden Karau, Andy
Konwinski, Patrick Wendell, and Matei Zaharia. O'Reilly. 2015. ISBN-13: 978-

http:/ /spark.apache.org/docs/latest /streaming-programming-guide.html#memory-

https://databricks-training.s3.amazonaws.com/realtime-processing-with-spark-
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