
SLIDES CREATED BY: SHRIDEEP PALLICKARA L33-B.1

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CS X55: DISTRIBUTED SYSTEMS [SPARK STREAMING]

Shrideep Pallickara
Computer Science

Colorado State University

1

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33-B.2

Topics covered in this lecture

¨ Spark Streaming
¤ Performance considerations
¤ Example

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33-B.2

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

PERFORMANCE CONSIDERATIONS IN
SPARK STREAMING

3

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33-B.4

Performance considerations

¨ Batch size
¤ 500 milliseconds is considered a good minimum size
¤ Start with a large batch size (~10 seconds) and work down to a smaller

batch size
n If processing times remain consistent, explore decreasing the batch size
n If the processing times increase? You have reached the limit

¨ Window size
¤ Has a great impact on performance
¤ Consider increasing this for expensive operations

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33-B.3

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33-B.5

Garbage collections and memory usage

¨ Cache RDDs in serialized form
¤ Using Kryo for serialization reduces this even more

n Reduces space for in-memory representations

¨ By default, Spark uses an in-memory cache
¤ Can also evict RDDs older than a certain time-period

n spark.cleaner.ttl
n This preemptive eviction of RDDs also reduces the garbage collection pressure

5

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33-B.6

Levels of parallelism in data receiving [1/4]

¨ Each input DStream creates a single receiver that receives a single
stream of data
¤ Receiving multiple data streams possible by creating multiple input

DStreams
n Each Dstream must be configured to receive different partitions of the data stream

from the source(s)

¨ For a Kafka DStream receiving data on two topics?
¤ Split into two DStreams each receiving one topic

n Two receivers would run and receive data in parallel

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33-B.4

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33-B.7

Levels of parallelism in data receiving [2/4]

¨ Another approach is to tune the receiver’s block interval
¤ Determined by spark.streaming.blockInterval

¨ For most receivers, received data is coalesced into blocks of data
before storing in memory

¨ The number of blocks in each batch determines the number of tasks
used to process the received data in a map-like transformation

¨ Number of tasks per batch?
¤ Batch interval/block interval

7

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33-B.8

Levels of parallelism in data receiving [3/4]

¨ Number of tasks per batch?
¤ Batch interval/block interval

¨ Block interval of 200 ms will create 10 tasks per 2 second batches

¨ If the number of tasks is too low?
¤ All available cores might not be available to use all the data

¨ To increase number of tasks for a given batch interval?
¤ Reduce the block interval

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33-B.5

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33-B.9

Levels of parallelism in data receiving [4/4]

¨ What if you did not want to receive data with multiple input streams?
¤ Explicitly repartition the input data stream

¨ Repartitioning is done using the inputStream.repartition(<number of
partitions>))

¤ Distributes the received batches of data across the specified number of
machines in the cluster before further processing

9

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33-B.10

Data serialization [1/2]

¨ Data received through receivers is stored with
StorageLevel.MEMORY_AND_DISK_SER_2
¤ Data that does not fit in memory spills over to disk

¨ Input data and persisted RDDs generated by DStream transformations
are automatically cleared
¤ If you are using a window operation of 10 minutes, then Spark Streaming

will keep the last 10 minutes of data, and actively throw away older data
¤ Data can be retained for a longer duration by setting
streamingContext.remember

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33-B.6

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33-B.11

Data serialization [2/2]

¨ RDDs generated by streaming computations may be persisted in
memory
¤ Persisted RDDs generated by streaming computations are persisted with

StorageLevel.MEMORY_ONLY_SER

¨ If you are using batch intervals of a few seconds and no window
operations?
¤ You can try disabling serialization in persisted data

n Reduce CPU overheads due to serialization, without excessive GC overheads.

11

COMPUTER SCIENCE DEPARTMENT

PROCESSING TWITTER STREAMS USING SPARK

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33-B.7

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33-B.13

Spark-streaming example [1/5]

¨ Step-by-step approach to finding the top 10 hashtags from a stream of tweets using
counts [Every second there is an output over data from the last 300 seconds]

¨ Step-1: Create a SparkStream context and Twitter credential setup

SparkConf sparkConf = new SparkConf().setAppName("Spark-
streaming-twitter-trends");

/*
Twitter authentication details … [Not included here]
*/
//JavaStreamigContext
JavaStreamingContext jssc =
 new JavaStreamingContext(sparkConf, new Duration(1000));

//Discretized stream of tweets
JavaDStream<Status> twitterStream = (JavaDStream<Status>)
TwitterUtils.createStream(jssc);

13

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33-B.14

Spark-streaming example [2/5]

¨ Step-2: Map Input DStream of Status to String

//Discretized stream of Strings
JavaDStream<String> statuses = twitterStream.map(

new Function<Status, String>() {
public String call(Status status) {
 return status.getText();
}

 }
);

statuses.print();

//trigger the execution of code
jssc.start();
jssc.awaitTermination();

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33-B.8

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33-B.15

Spark-streaming example [3/5]

¨ Step-3: Stream of hashtags from stream of tweets
//Tokenize words from status
JavaDStream<String> wordsFromStatuses = statuses.flatMap(

new FlatMapFunction<String, String>() {
 public Iterable<String> call(String input) {
 return Arrays.asList(input.split(" "));
 }
}

);

//Extract hashtags
JavaDStream<String> hashTags = wordsFromStatuses.filter(

new Function<String, Boolean>() {
 public Boolean call(String word) {
 return word.startsWith("#");
 }
}

);

15

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33-B.16

Spark-streaming example [4/5]

¨ Step-4: Count the hashtag over 5 min window
//Mapping to tuple of (hashtag,1) in order to count
JavaPairDStream<String, Integer> hashtagtuples = hashTags.mapToPair(
new PairFunction<String, String, Integer>() {
 public Tuple2<String, Integer> call(String input) {
 return new Tuple2<String, Integer>(input, 1);
 }
});
//Aggregating over window of 5 min and silde of 1s
JavaPairDStream<String, Integer> counts =
hashtagtuples.reduceByKeyAndWindow(
 new Function2<Integer, Integer, Integer>() {
 public Integer call(Integer int1, Integer int2) {
 return int1 + int2;
 }
 }, new Function2<Integer, Integer, Integer>() {
 public Integer call(Integer int1, Integer int2) {
 return int1 - int2;
 }
 }, new Duration(60 * 5 * 1000), new Duration(1 * 1000));

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33-B.9

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33-B.17

Spark-streaming example [5/5]

¨ Step-5: Find top 10 hashtags according to counts
JavaPairDStream<Integer, String> swapCounts = counts.mapToPair(
new PairFunction<Tuple2<String, Integer>, Integer, String>() {
 public Tuple2<Integer, String> call(Tuple2<String, Integer> input)
 return input.swap();
 }});
JavaPairDStream<Integer, String> sortedCount = swapCounts.transformToPair(
new Function<JavaPairRDD<Integer, String>,JavaPairRDD<Integer, String>>(){
public JavaPairRDD<Integer, String> call(JavaPairRDD<Integer, String> input)
throws Exception {
 return input.sortByKey(false);
}});
sortedCount.foreach(new Function<JavaPairRDD<Integer, String>, Void> () {
 public Void call(JavaPairRDD<Integer, String> rdd) {
 String out = "\nTrending hashtags:\n";
 for (Tuple2<Integer, String> t: rdd.take(10)) {
 out = out + t.toString() + "\n";
}
System.out.println(out);
return null;}});

17

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33-B.18

The contents of this slide-set are based on the
following references
¨ Learning Spark: Lightning-Fast Big Data Analysis. 1st Edition. Holden Karau, Andy

Konwinski, Patrick Wendell, and Matei Zaharia. O'Reilly. 2015. ISBN-13: 978-
1449358624.
[Chapter 10]

¨ Spark Streaming Programming Guide:
http://spark.apache.org/docs/latest/streaming-programming-guide.html#memory-
tuning

¨ Processing Twitter Streams using Spark:
https://databricks-training.s3.amazonaws.com/realtime-processing-with-spark-
streaming.html

18

