
SLIDES CREATED BY: SHRIDEEP PALLICKARA L33.1

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CS X55: DISTRIBUTED SYSTEMS [SPARK STREAMING]

Shrideep Pallickara
Computer Science

Colorado State University

Drinking from a fire hose
A packet in isolation seems fine
 Why then, do streams, strain systems design?

If processing lags the rate of arrival?
 Imperil, you will, your process’ survival

1

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.2

Frequently asked questions from the previous class
survey

¨ Does Spark try to satisfy wide dependencies first?

¨ In narrow & wide transformations does the data shuffling happen only
when action is called on the transformation?

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33.2

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.3

Topics covered in this lecture

¨ Alleviating inefficiencies with shuffles

¨ Spark Streaming
¤ Architecture and Abstractions
¤ Execution
¤ Stateful and stateless transformations
¤ Windowed operations
¤ Performance considerations
¤ Example

3

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.4

Two primary techniques to avoid performance
problems associated with shuffles

¨ Shuffle Less

¨ Shuffle Better

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33.3

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.5

Shuffle Less

¨ Preserve partitioning across narrow transformations to avoid
reshuffling data

¨ Use the same partitioner on a sequence of wide transformations. This
can be particularly useful:
¤ To avoid shuffles during joins and …
¤ To reduce the number of shuffles required to compute a sequence of wide

transformations

5

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.6

Shuffle Better [1/2]

¨ Sometimes, computation cannot be completed without a shuffle

¨ However, not all wide transformations and not all shuffles are equally
expensive or prone to failure

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33.4

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.7

Shuffle Better [2/2]

¨ By using wide transformations such as reduceByKey and
aggregateByKey that can preform map-side reductions and that do not
require loading all the records for one key into memory?
¤ You can prevent memory errors on the executors and
¤ Speed up wide transformations, particularly for aggregation operations

¨ Lastly, shuffling data in which records are distributed evenly throughout
the keys, and which contain a high number of distinct keys?
¤ Prevents out-of-memory errors on the executors and “straggler tasks”

7

COMPUTER SCIENCE DEPARTMENT

PARTITIONERS

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33.5

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.9

Partitioners

¨ The partitioner defines how records will be distributed and thus
which records will be completed by each task

¨ Practically, a partitioner is actually an interface with two methods
¤ numPartitions that defines the number of partitions in the RDD after

partitioning
¤ getPartition that defines a mapping from a key to the integer index of the

partition where records with that key should be sent

9

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.10

There are two implementations for the partitioner
object provided by Spark

¨ HashPartitioner
¤ Determines the index of the child partition based on the hash value of the

key

¨ RangePartitioner
¤ Assigns records whose keys are in the same range to a given partition
¤ Required for sorting since it ensures that by sorting records within a given

partition, the entire RDD will be sorted

¨ It is possible to define a custom partitioner

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33.6

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.11

Partitioners and transformations

¨ Unless a transformation is known to only change the value part of the
key/value pair in Spark
¤ The resulting RDD will not have a known partitioner

n Even if the partitioning has not changed

11

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.12

Using narrow transformations that preserve
partitioning

¨ Some narrow transformations, such as mapValues, preserve the
partitioning of an RDD if it exists

¨ Common transformations like map and flatMap can change the key
¤ So even if your function does not change the key, the resulting RDD will not

have a known partitioner.
¤ Instead, if you don’t want to modify the keys, call the mapValues function

(defined only on pair RDDs)
n It keeps the keys, and therefore the partitioner, exactly the same.

n The mapPartitions function will also preserve the partition if the
preservesPartitioning flag is set to true.

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33.7

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

SPARK STREAMING

13

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.14

Related Work

Thilina Buddhika*, Sangmi Lee Pallickara, and Shrideep Pallickara. Pebbles: Leveraging Sketches for
Processing Voluminous, High Velocity Data Streams. IEEE Transactions on Parallel and Distributed
Systems. Vol 32 (8) pp 2005 - 2020. 2021.

Thilina Buddhika*, Ryan Stern*, Kira Lindburg*, Kathleen Ericson*, and Shrideep Pallickara. Online
Scheduling and Interference Alleviation for Low-latency, High-throughput Processing of Data
Streams. IEEE Transactions on Parallel and Distributed Systems. Vol. 28(12) pp 3553-3569. 2017.

Thilina Buddhika* and Shrideep Pallickara. Neptune: Real Time Stream Processing for Internet of
Things and Sensing Environments. Proceedings of the 30th IEEE International Parallel & Distributed
Processing Symposium. pp 1143-1152. Chicago, USA. 2016.

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33.8

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.15

Spark Streaming

¨ Act on data as soon as it arrives
¤ Track statistics of page views in real time, detect anomalies, etc.

¨ Spark streaming
¤ Spark’s module for dealing with streaming data
¤ Uses an API very similar to what we have seen with batch jobs (centered

around RDDs)

¨ Available in Java, Scala, and Python

15

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.16

Spark Streaming: Core concepts

¨ Provides an abstraction called DStreams (discretized streams)

¨ A DStream is a sequence of data arriving over time

¨ Internally, a DStream is represented as a sequence of RDDs arriving
at each time step

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33.9

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.17

DStreams

¨ DStreams can be created from various input sources
¤ Flume, Kafka, or HDFS

¨ Once built, DStreams offer two types of operations:
¤ Transformations: Yields a new DStream
¤ Output operations: Writes data to an external system

¨ Provides many of the same operations available on RDDs
¤ PLUS new operations related to time (e.g., sliding windows)

17

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.18

Simple Streaming Example [1/2]

¨ Start by creating a StreamingContext
¤ Main entry point for streaming functionality
¤ Specify batch interval, specifying how often to process new data

¨ We will use socketTextStream() to create a DStream based on
text data received over a port

¨ Transform DStream with filter to get lines that contain “error”

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33.10

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.19

Simple Streaming Example [2/2]

JavaStreamingContext jssc =
new JavaStreamingContext(conf, Durations.seconds(1));

JavaDStream<String> lines =
jssc.socketTextStream(“localhost”, 7777);

JavaDStream<String> errorLines =
lines.filter(new Function<String, Boolean> () {

public Boolean call(String line) {

return line.contains(“error”);

}

};

19

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.20

Previous snippet only sets up the computation

¨ To start receiving the data?
¤ Explicitly call start() on StreamContext

¨ SparkStreaming will start to schedule Spark jobs on the underlying
SparkContext
¤ Occurs in a separate thread
¤ To keep application from terminating?

n Also call awaitTermination()

jssc.start();

jssc.awaitTermination()

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33.11

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

ARCHITECTURE & ABSTRACTION

21

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.22

Spark Streaming Architecture

¨ Spark Streaming uses a micro-batch architecture
¤ Streaming computation is treated as continuous series of batch computations

on small batches of data

¨ Receives data from various input sources and groups into small batches

¨ New batches are created at regular intervals
¤ At the start of each time interval, a new batch is created

n Any data arriving in that interval is added to the batch

n Size of batch is controlled by the batch interval

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33.12

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.23

High-level architecture of Spark Streaming

Spark Streaming

Input Data Streams

Re
ce

iv
er

s
Batches of
input data

Spark

Results pushed to
external systems

23

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.24

DStream is a sequence of RDDs, where each RDD
has one slice of data in stream

Data from
time 0 to 1

Data from
time 1 to 2

Data from
time 2 to 3

Data from
time 3 to 4

time
0 1 2 3 4

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33.13

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.25

DStreams and the transformations in our example

Server running at
localhost:7777

Data from
time 0 to 1

Data from
time 1 to 2

Data from
time 2 to 3

Data from
time 3 to 4

error lines from
time 0 to 1

error lines from
time 1 to 2

error lines from
time 2 to 3

error lines from
time 3 to 4

25

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.26

DStreams support output operations, such as
print()

¨ Output operations are similar to RDD actions in that they write data to
an external system

¨ But in Spark Streaming they run periodically on each time step,
producing output in batches

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33.14

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.27

Spark Streaming: Execution

¨ For each input source, Spark Streaming launches receivers
¤ Tasks running within the application’s executors that collect data from source

and save as RDDs
¤ Receives input data and replicates it (by default) to another executor for

fault tolerance
¤ Data is stored in memory of the executors in the same way that RDDs are

cached

27

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.28

Spark Streaming: Execution

¨ StreamingContext in the driver program then periodically runs Spark
jobs to:
¤ Process this data and …
¤ Combine it with RDDs from previous time steps

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33.15

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.29

Spark Streaming: Execution

Driver Program

Spark jobs to process
received data

Streaming Context

Spark Context

Worker Node

Worker Node

Executor

Task Receiver

Executor

Task Task

Input Stream

Data replicated
to another node

Output results
in batches

29

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.30

Spark Streaming: Fault Tolerance [1/2]

¨ Spark Streaming offers the same fault-tolerance properties for
DStreams as Spark has for RDDs
¤ As long as a copy of the input data is still available, it can recompute any

state derived from it using the lineage of the RDDs
n By rerunning the operations used to process it

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33.16

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.31

Spark Streaming: Fault Tolerance [2/2]

¨ By default, data is replicated across two nodes
¤ Can tolerate single worker failures

¨ Using lineage graphs to recompute any derived state? Impractical

¨ Spark Streaming relies on checkpointing
¤ Saves state periodically

¤ Checkpoint every 5-10 batches of data
¤ When recovering, only go back to the last checkpoint

31

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.32

Spark Streaming: Transformations

¨ Stateless transformations
¤ Each batch does not depend on data of its previous batches

¨ Stateful transformations
¤ Use data or intermediate results from previous batches to compute results of

the current batch

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33.17

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

STATELESS TRANSFORMATIONS

33

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.34

Stateless transformations

¨ Stateless transformations are simple RDD transformations being
applied on every batch — that is, every RDD in a DStream

¨ Many of the RDD transformations that we have looked at are also
available on DStreams

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33.18

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.35

Examples of stateless transformations [1/6]

¨ map()

¨ Apply a function to each element in the DStream and return a
DStream of the result

¨ ds.map (x => x + 1)

35

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.36

Examples of stateless transformations [2/6]

¨ flatMap()

¨ Apply a function to each element in the DStream and return a
DStream of the contents of the iterators returned

¨ ds.flatMap (x => x.split(“ “))

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33.19

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.37

Examples of stateless transformations [3/6]

¨ filter()

¨ Return a DStream consisting of only elements that pass the condition
passed to filter

¨ ds.filter (x => x != 1)

37

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.38

Examples of stateless transformations [4/6]

¨ repartition()

¨ Change the number of partitions of the DStream
¤ Distributes the received batches across the specified number of machines in

the cluster before processing
n The physical manifestation of the DStream is different in this case

¨ ds.repartition(10)

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33.20

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.39

Examples of stateless transformations [5/6]

¨ reduceByKey()

¨ Combine values with the same key in each batch

¨ ds.reduceByKey((x, y) = > x + y))

39

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.40

Examples of stateless transformations [6/6]

¨ groupByKey()

¨ Group values with the same key in each batch

¨ ds.groupByKey()

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33.21

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.41

A note about stateless operations

¨ Although it may seem that they are being applied over the whole
stream …
¤ Each DStream has multiple RDDs (batches)
¤ Stateless transformation applies separately to each RDD
¤ E.g., reduceByKey() will reduce data for each timestep, but not across

timesteps

41

COMPUTER SCIENCE DEPARTMENT

STATEFUL TRANSFORMATIONS

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33.22

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.43

Stateful transformations

¨ Operations on DStreams that track data across time
¤ Data from previous batches used to generate results for a new batch

¨ Two types of windowed operations
¤ Act over sliding window of time periods
¤ updateStateBykey() track state across events for each key

43

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.44

Stateful transformations and fault tolerance

¨ Requires checkpointing to be enabled in StreamingContext for fault
tolerance

ssc.checkpoint(“hdfs:// …”);

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33.23

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.45

Windowed Transformations

¨ Compute results across a longer time period than the batch interval

¨ Two parameters: window and sliding durations
¤ Both must be a multiple of the batch interval

¨ Window duration controls how many previous batches of data are
considered
¤ window Duration/batchInterval

¤ If the batch interval is 10 seconds and the sliding window is 30 seconds …
last 3 batches

45

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.46

A windowed stream:
Window duration (3) & slide duration (2)

Every 2 time steps, we
compute a result over the
previous 3 time steps

t1

t2

t3

t4

t5

t6

Network Input
Windowed Stream:
Window: 3, Slide: 2

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33.24

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.47

Simplest window operation on a DStream

¨ window()

¨ Returns new DStream with data from the requested window

¨ Each RDD in the DStream resulting from window(), will contain data
from multiple batches

47

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.48

Other operations on top of window()

¨ reduceByWindow and reduceByKeyAndWindow

¨ Includes a special form that allows reduction to be performed
incrementally
¤ Considering only the data coming into the window and the data that is

going out
¤ Special form requires an inverse of the reduce function

n Such as – for +

¤ More efficient for large windows if your function has an inverse

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33.25

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.49

Difference between naïve and incremental
reduceByWindow()

{1, 1}

{4,2}

{9}

{3}

{3, 1}

{1}

20

22

17

t1

t2

t3

t4

t5

t6

Network Input
Naïve reduce
by Window

Network Input Reduce by
Window with +-

{1, 1}

{4,2}

{9}

{3}

{3, 1}

{1}

20

22

17

t1

t2

t3

t4

t5

t6

-

-

+

+

+

+

49

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.50

Maintaining state across batches

¨ updateStateByKey()

¤ Provides access to a state variable for DStreams of key/value pairs
¤ Given a DStream of (key, value) pairs

n Construct a new DStream of (key, state) pairs by taking a function that specifies how
to update the state for each key, given new events

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA L33.26

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.51

The contents of this slide-set are based on the
following references
¨ Learning Spark: Lightning-Fast Big Data Analysis. 1st Edition. Holden Karau, Andy

Konwinski, Patrick Wendell, and Matei Zaharia. O'Reilly. 2015. ISBN-13: 978-
1449358624.
[Chapter 10]

¨ Spark Streaming Programming Guide:
http://spark.apache.org/docs/latest/streaming-programming-guide.html#memory-
tuning

¨ Processing Twitter Streams using Spark:
https://databricks-training.s3.amazonaws.com/realtime-processing-with-spark-
streaming.html

51

