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Drinking from a fire hose 
A packet in isolation seems fine
    Why then, do streams, strain systems design?

If processing lags the rate of arrival?
     Imperil, you will, your process’ survival 
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Frequently asked questions from the previous class 
survey

¨ Does Spark try to satisfy wide dependencies first?

¨ In narrow & wide transformations does the data shuffling happen only 
when action is called on the transformation?
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Topics covered in this lecture

¨ Alleviating inefficiencies with shuffles

¨ Spark Streaming
¤ Architecture and Abstractions
¤ Execution
¤ Stateful and stateless transformations
¤ Windowed operations
¤ Performance considerations
¤ Example
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Two primary techniques to avoid performance 
problems associated with shuffles

¨ Shuffle Less

¨ Shuffle Better
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Shuffle Less

¨ Preserve partitioning across narrow transformations to avoid 
reshuffling data

¨ Use the same partitioner on a sequence of wide transformations. This 
can be particularly useful:
¤ To avoid shuffles during joins and …
¤ To reduce the number of shuffles required to compute a sequence of wide 

transformations
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Shuffle Better                                         [1/2]

¨ Sometimes, computation cannot be completed without a shuffle 

¨ However, not all wide transformations and not all shuffles are equally 
expensive or prone to failure 
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Shuffle Better                                         [2/2]

¨ By using wide transformations such as reduceByKey and 
aggregateByKey that can preform map-side reductions and that do not 
require loading all the records for one key into memory?
¤ You can prevent memory errors on the executors and 
¤ Speed up wide transformations, particularly for aggregation operations 

¨ Lastly, shuffling data in which records are distributed evenly throughout 
the keys, and which contain a high number of distinct keys? 
¤ Prevents out-of-memory errors on the executors and “straggler tasks” 
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Partitioners

¨ The partitioner defines how records will be distributed and thus 
which records will be completed by each task

¨ Practically, a partitioner is actually an interface with two methods
¤ numPartitions that defines the number of partitions in the RDD after 

partitioning 
¤ getPartition that defines a mapping from a key to the integer index of the 

partition where records with that key should be sent
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There are two implementations for the partitioner
object provided by Spark

¨ HashPartitioner
¤ Determines the index of the child partition based on the hash value of the 

key

¨ RangePartitioner
¤ Assigns records whose keys are in the same range to a given partition 
¤ Required for sorting since it ensures that by sorting records within a given 

partition, the entire RDD will be sorted

¨ It is possible to define a custom partitioner
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Partitioners and transformations

¨ Unless a transformation is known to only change the value part of the 
key/value pair in Spark 
¤ The resulting RDD will not have a known partitioner

n Even if the partitioning has not changed
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Using narrow transformations that preserve 
partitioning

¨ Some narrow transformations, such as mapValues, preserve the 
partitioning of an RDD if it exists 

¨ Common transformations like map and flatMap can change the key 
¤ So even if your function does not change the key, the resulting RDD will not 

have a known partitioner. 
¤ Instead, if you don’t want to modify the keys, call the mapValues function 

(defined only on pair RDDs) 
n It keeps the keys, and therefore the partitioner, exactly the same. 

n The mapPartitions function will also preserve the partition if the 
preservesPartitioning flag is set to true.
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Spark Streaming

¨ Act on data as soon as it arrives
¤ Track statistics of page views in real time, detect anomalies, etc.

¨ Spark streaming
¤ Spark’s module for dealing with streaming data
¤ Uses an API very similar to what we have seen with batch jobs (centered 

around RDDs)

¨ Available in Java, Scala, and Python
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Spark Streaming: Core concepts

¨ Provides an abstraction called DStreams (discretized streams)

¨ A DStream is a sequence of data arriving over time

¨ Internally, a DStream is represented as a sequence of RDDs arriving 
at each time step
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DStreams

¨ DStreams can be created from various input sources
¤ Flume, Kafka, or HDFS

¨ Once built, DStreams offer two types of operations:
¤ Transformations: Yields a new DStream
¤ Output operations: Writes data to an external system

¨ Provides many of the same operations available on RDDs
¤ PLUS new operations related to time (e.g., sliding windows)
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Simple Streaming Example                      [1/2]

¨ Start by creating a StreamingContext
¤ Main entry point for streaming functionality
¤ Specify batch interval, specifying how often to process new data

¨ We will use socketTextStream() to create a DStream based on 
text data received over a port

¨ Transform DStream with filter to get lines that contain “error” 
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Simple Streaming Example                      [2/2]

JavaStreamingContext jssc = 
new JavaStreamingContext(conf, Durations.seconds(1));

JavaDStream<String> lines = 
jssc.socketTextStream(“localhost”, 7777);

JavaDStream<String> errorLines =
lines.filter(new Function<String, Boolean> () {

public Boolean call(String line) {

return line.contains(“error”);

} 

};
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Previous snippet only sets up the computation

¨ To start receiving the data?
¤ Explicitly call start() on StreamContext

¨ SparkStreaming will start to schedule Spark jobs on the underlying 
SparkContext
¤ Occurs in a separate thread
¤ To keep application from terminating?

n Also call awaitTermination()

jssc.start();

jssc.awaitTermination()

20



SLIDES CREATED BY: SHRIDEEP PALLICKARA L33.11

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

ARCHITECTURE & ABSTRACTION

21

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.22

Spark Streaming Architecture

¨ Spark Streaming uses a micro-batch architecture
¤ Streaming computation is treated as continuous series of batch computations

on small batches of data

¨ Receives data from various input sources and groups into small batches

¨ New batches are created at regular intervals
¤ At the start of each time interval, a new batch is created

n Any data arriving in that interval is added to the batch

n Size of batch is controlled by the batch interval
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High-level architecture of Spark Streaming

Spark Streaming

Input Data Streams

Re
ce

iv
er

s
Batches of 
input data

Spark

Results pushed to 
external systems
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DStream is a sequence of RDDs, where each RDD 
has one slice of data in stream

Data from 
time 0 to 1

Data from 
time 1 to 2

Data from 
time 2 to 3

Data from 
time 3 to 4

time
0 1 2 3 4
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DStreams and the transformations in our example

Server running at 
localhost:7777

Data from 
time 0 to 1

Data from 
time 1 to 2

Data from 
time 2 to 3

Data from 
time 3 to 4

error lines from
time 0 to 1

error lines from
time 1 to 2

error lines from
time 2 to 3

error lines from 
time 3 to 4
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DStreams support output operations, such as 
print()

¨ Output operations are similar to RDD actions in that they write data to 
an external system

¨ But in Spark Streaming they run periodically on each time step, 
producing output in batches
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Spark Streaming: Execution

¨ For each input source, Spark Streaming launches receivers
¤ Tasks running within the application’s executors that collect data from source 

and save as RDDs
¤ Receives input data and replicates it (by default) to another executor for 

fault tolerance
¤ Data is stored in memory of the executors in the same way that RDDs are 

cached 
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Spark Streaming: Execution

¨ StreamingContext in the driver program then periodically runs Spark 
jobs to:
¤ Process this data and …
¤ Combine it with RDDs from previous time steps
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Spark Streaming: Execution

Driver Program

Spark jobs to process
received data

Streaming Context

Spark Context

Worker Node

Worker Node 

Executor

Task Receiver

Executor

Task Task

Input Stream

Data replicated 
to another node

Output results
in batches
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Spark Streaming: Fault Tolerance                    [1/2]

¨ Spark Streaming offers the same fault-tolerance properties for 
DStreams as Spark has for RDDs
¤ As long as a copy of the input data is still available, it can recompute any 

state derived from it using the lineage of the RDDs 
n By rerunning the operations used to process it
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Spark Streaming: Fault Tolerance                             [2/2]

¨ By default, data is replicated across two nodes
¤ Can tolerate single worker failures

¨ Using lineage graphs to recompute any derived state?   Impractical

¨ Spark Streaming relies on checkpointing
¤ Saves state periodically

¤ Checkpoint every 5-10 batches of data
¤ When recovering, only go back to the last checkpoint   
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Spark Streaming: Transformations

¨ Stateless transformations
¤ Each batch does not depend on data of its previous batches

¨ Stateful transformations
¤ Use data or intermediate results from previous batches to compute results of 

the current batch
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Stateless transformations

¨ Stateless transformations are simple RDD transformations being 
applied on every batch — that is, every RDD in a DStream

¨ Many of the RDD transformations that we have looked at are also 
available on DStreams

34



SLIDES CREATED BY: SHRIDEEP PALLICKARA L33.18

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.35

Examples of stateless transformations       [1/6]

¨ map()

¨ Apply a function to each element in the DStream and return a 
DStream of the result

¨ ds.map (x => x + 1)
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Examples of stateless transformations       [2/6]

¨ flatMap()

¨ Apply a function to each element in the DStream and return a 
DStream of the contents of the iterators returned

¨ ds.flatMap (x => x.split(“ “) )
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Examples of stateless transformations       [3/6]

¨ filter()

¨ Return a DStream consisting of only elements that pass the condition 
passed to filter

¨ ds.filter (x => x != 1 )
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Examples of stateless transformations       [4/6]

¨ repartition()

¨ Change the number of partitions of the DStream
¤ Distributes the received batches across the specified number of machines in 

the cluster before processing
n The physical manifestation of the DStream is different in this case

¨ ds.repartition(10)
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Examples of stateless transformations       [5/6]

¨ reduceByKey()

¨ Combine values with the same key in each batch

¨ ds.reduceByKey(  (x, y) = > x + y)   )
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Examples of stateless transformations       [6/6]

¨ groupByKey()

¨ Group values with the same key in each batch

¨ ds.groupByKey( )
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A note about stateless operations

¨ Although it may seem that they are being applied over the whole 
stream  …
¤ Each DStream has multiple RDDs (batches) 
¤ Stateless transformation applies separately to each RDD
¤ E.g., reduceByKey() will reduce data for each timestep, but not across 

timesteps
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Stateful transformations

¨ Operations on DStreams that track data across time
¤ Data from previous batches used to generate results for a new batch

¨ Two types of windowed operations
¤ Act over sliding window of time periods
¤ updateStateBykey() track state across events for each key
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Stateful transformations and fault tolerance

¨ Requires checkpointing to be enabled in StreamingContext for fault 
tolerance

ssc.checkpoint(“hdfs:// …”);
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Windowed Transformations

¨ Compute results across a longer time period than the batch interval

¨ Two parameters: window and sliding durations
¤ Both must be a multiple of the batch interval

¨ Window duration controls how many previous batches of data are 
considered
¤ window Duration/batchInterval

¤ If the batch interval is 10 seconds and the sliding window is 30 seconds … 
last 3 batches
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A windowed stream: 
Window duration (3) & slide duration (2)

Every 2 time steps, we 
compute a result over the 
previous 3 time steps

t1

t2

t3

t4

t5

t6

Network Input
Windowed Stream:
Window: 3,   Slide: 2
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Simplest window operation on a DStream

¨ window()

¨ Returns new DStream with data from the requested window

¨ Each RDD in the DStream resulting from window(), will contain data 
from multiple batches
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Other operations on top of window()

¨ reduceByWindow and reduceByKeyAndWindow

¨ Includes a special form that allows reduction to be performed 
incrementally
¤ Considering only the data coming into the window and the data that is 

going out
¤ Special form requires an inverse of the reduce function

n Such as – for + 

¤ More efficient for large windows if your function has an inverse
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Difference between naïve and incremental 
reduceByWindow()

{1, 1}

{4,2}

{9}

{3}

{3, 1}

{1}

20

22

17

t1

t2

t3

t4

t5

t6

Network Input
Naïve reduce
by Window

Network Input Reduce by 
Window with +-

{1, 1}

{4,2}

{9}

{3}

{3, 1}

{1}

20

22

17

t1

t2

t3

t4

t5

t6

-

-

+

+

+

+

49

SPARK STREAMINGCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L33.50

Maintaining state across batches

¨ updateStateByKey()

¤ Provides access to a state variable for DStreams of key/value pairs
¤ Given a DStream of (key, value) pairs 

n Construct a new DStream of (key, state) pairs by taking a function that specifies how 
to update the state for each key, given new events
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The contents of this slide-set are based on the 
following references
¨ Learning Spark: Lightning-Fast Big Data Analysis.  1st Edition.  Holden Karau, Andy 

Konwinski, Patrick Wendell, and Matei Zaharia. O'Reilly. 2015. ISBN-13: 978-
1449358624. 
[Chapter  10]

¨ Spark Streaming Programming Guide: 
http://spark.apache.org/docs/latest/streaming-programming-guide.html#memory-
tuning

¨ Processing Twitter Streams using Spark:
https://databricks-training.s3.amazonaws.com/realtime-processing-with-spark-
streaming.html
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