CS X55: Distributed Systems [LOGiCAl Clocks]

Shrideep Pallickara
Computer Science
Colorado State University

1

Topics covered in this lecture

\square Logical clocksVector clocksMatrix clocks

Logical Clocks

3

Physical time in a distributed system is problematic

\square This is not because of the effects of special relativity, which are negligible or non-existent for normal computers
\square Unless you count computers travelling in spaceships
\square It is because of the inability to accurately timestamp events at different nodes

We need this to order any pairs of events

If two processes do not interact with each other?

Their clocks need not be synchronized

Lack of synchronization is not observable
Does not cause problems

5

Logical clocks

Within a single process, events are ordered uniquely by times shown on local clockBut we cannot synchronize clocks perfectly across a distributed system [Lamport 1978]
\square We cannot use physical time to find out the order of an arbitrary pair of events in a distributed system

We can use a scheme that is similar to physical causality to order events

(1) If two events occurred at the same process $p_{\mathrm{i}}(\mathrm{i}=1,2, \ldots, \mathrm{~N})$?
\square Then they occurred in the order in which p_{i} observes them \square This is the order \rightarrow_{i}
(2) When a message is sent between processes?
\square The event of sending the message occurred before the event of receiving the message

The \rightarrow relation

\square Lamport called the partial ordering obtained by generalizing the previous 2 relationships
\square The happened-before or happens-before relation
\square Sometimes also known as the relation of causal ordering or potential causal ordering

Lamport's logical clocks

\square The happens-before relation
$\square a$ and b are events in the process; and a occurs before b

- Then $a \rightarrow b$ is true
$\square a$ is event of message sent by one process;
b is event of message being received in another process
- Then $a \rightarrow b$ is true

9

Some more things about the happens-before relation

\square If $a \rightarrow b$ and $b \rightarrow c$; then $a \rightarrow c$
\square Transitive
\square If events x and y occur in processes that do not exchange messages, then ...
$\square x \rightarrow y$ is not true
\square But, neither is $y \rightarrow x$
\square These events are said to be concurrent

Events occurring at three processes

- $a \rightarrow b$ and $c \rightarrow d$
- These occur within the same process
$\square b \rightarrow c$ and $d \rightarrow f$
- Events that correspond to sending and receiving messages
- We can use transitivity to say $a \rightarrow f$
\square No relationship between a and e; these are concurrent $a \| e$
colorado state university

If the \rightarrow relation holds between two processes

\square The first event might or might-not have caused the second
\square The \rightarrow relation only captures potential causality

- i.e. two events can be related by \rightarrow without a real connection between them

EXAMPLE 1: If the server receives a request and sends a response?
\square Then reply is caused by the request
EXAMPLE 2: A process might receive a request and subsequently issue another message

But this could be one that it issues every 5 minutes anyway

A simple example of Lamport timestamps

An example of Lamport's algorithm:

Each clock runs at a constant (but different rate)
colorado state university

An example of Lamport's algorithm:

Each clock runs at a constant (but different rate)
coldrado state university
Professor: SHRIDEEP PALLICKARA
Computer Science Department Logical Clocks
L34.15

15

Implementing Lamport's clocks

(1) Before executing an event; P_{i} executes
$C_{i}=C_{i}+1$
(2) When P_{i} sends a message m to P_{j}; it sets m 's timestamp ts(m) to C_{i} in previous step
(3) Upon receipt of message m, P_{j} adjusts its own local counter $\mathrm{C}_{\mathrm{j}}=\max \left\{C_{j}, t s(m)\right\}$
do step (1) and deliver message

The positioning of Lamport's clocks in distributed systems

An application of Lamport's clock:

User has \$1000 in bank account initially

Add \$100 to account Update with 1% interest

New York

Add \$100 Total:\$1100
Give 1\% interest on total= \$11
Balance: \$1111
colorado state university

Give 1\% interest ... Total= \$1010 Add $\$ 100$
Balance: \$1110

There is a difference when the orders are reversed

\square Our objective for now is consistency
\square Both copies must be exactly the same

Use Lamport's clock to order messages

Process puts received messages into local queve\square Ordered according to the message's timestamp
\square Message can be delivered only if it is acknowledged by all the other processes
\square If a message is at the head of the queve, and acknowledged by all processes
$\square \mathrm{lt}$ is delivered and processed

Lamport's Clocks order events based on the happened-before relationship

\square If a happened before b, then $C(a)<C(b)$
\square But nothing can be said about two events a and b by merely comparing their values$C(a)<C(b)$?

- Does not mean a happened before b

Let's look a little closer

$T_{\text {snd }}\left(m_{i}\right)$: Time m_{i} was sent$\square T_{r c v}\left(m_{i}\right)$: Time m_{i} was received
$\square T_{s n d}\left(m_{i}\right)<T_{r c v}\left(m_{i}\right)$BUT

- $T_{\text {snd }}\left(m_{i}\right)<T_{r c v}\left(m_{j}\right)$?
- NO

Concurrent message transmissions

Sending m3 MAY HAVE depended on m 1
$\mathrm{T}_{\mathrm{rcv}}(\mathrm{m} 1)<\mathrm{T}_{\text {snd }}(\mathrm{m} 2)$

But sending of $m 2$ has nothing to do with receipt of $m 1$

Lamport clocks do not capture causality

Vector Clocks

Lamport's Clocks order events based on the happened-before relationship

\square If a happened before b, then $C(a)<C(b)$
\square But nothing can be said about two events a and b by merely comparing their values$C(a)<C(b)$?

- Does not mean a happened before b

Let's look a little closer

$\square T_{\text {snd }}\left(m_{i}\right)$: Time m_{i} was sent
$\square T_{r c v}\left(m_{i}\right):$ Time m_{i} was received
$\square T_{\text {snd }}\left(m_{i}\right)<T_{r c v}\left(m_{i}\right)$
\square BUT

- $T_{\text {snd }}\left(m_{i}\right)<T_{\text {rcv }}\left(m_{j}\right)$?
- NO

Concurrent message transmissions

Sending m3 MAY HAVE depended on ml

But sending of $m 2$ has nothing to do with receipt of $m 1$
$T_{\mathrm{rcv}}(\mathrm{m} 1)<\mathrm{T}_{\mathrm{snd}}(\mathrm{m} 2)$
Lamport clocks do not capture causality

Vector clocks

\square Developed by Mattern [1989] and Fidge [1991] to overcome shortcomings of Lamport's clocks
\square i.e. if $C(a)<C(b)$ then we cannot conclude $a \rightarrow b$A vector clock for a system of N processes is an array of N integers
Each process keeps its own vector clock VC_{i}
Process uses it vector clock to timestamp messages

Causal precedence can be captured by Vector clocks

Event a is known to causally precede event b iff $\mathrm{VC}(\mathrm{a})<\mathrm{VC}(\mathrm{b})$
$\square \mathrm{VC}(\mathrm{a})<\mathrm{VC}(\mathrm{b})$ iff $\mathrm{VC}(\mathrm{a})[\mathrm{k}] \leq \mathrm{VC}(\mathrm{b})[\mathrm{k}]$ for all k and at least one of those relationships is strictly smaller

Each process P_{i} maintains a vector VC_{i}
$\mathrm{VC}_{\mathrm{i}}[\mathrm{i}]$ is number of events so far at P_{i}
\square If $\left.\mathrm{VC}_{\mathrm{i}} \mathrm{j} \mathrm{j}\right]=\mathrm{k}$
$\square \mathrm{P}_{\mathrm{i}}$ knows k events occurred at P_{j}
$\square \mathrm{P}_{\mathrm{i}}$'s knowledge of local time at P_{j}

Vectors are piggybacked along with any messages that are sent

(1) Before executing an event (sending, delivering, or internal) P_{i} executes

- $\mathrm{VC}_{\mathrm{i}}[\mathrm{i}]=\mathrm{VC}_{\mathrm{i}}[\mathrm{i}]+1$
(2) When P_{i} sends a message m to P_{j}
- Set m 's timestamp $t s(m)$ to VC_{i} after doing (1)
(3) After receiving m, process P_{j} adjusts its vector
- $\quad \mathrm{VC}_{\mathrm{j}}[\mathrm{k}]=\max \left\{\mathrm{VC}_{\mathrm{j}}[\mathrm{k}], \mathrm{ts}(\mathrm{m})[\mathrm{k}]\right\}$ for each k
- Execute step (1) and deliver

CSx55: Distributed Systems Dept. Of Computer Science, Colorado State University

Vector clocks example 1

Vector clocks example 2

Vector timestamps allow us to determine causality and concurrency

\square Event a happened before event b iff

- ts $(\mathrm{a}) \leq$ ts (b) for each process i
- And one of those relationships is strictly smaller
\square If this is not true
Events a and b are concurrent

Vector Clocks: Other aspects

\square If event a has timestamp, $t s(a)$:
$\square t s(a)[\mathrm{i}]-1$

- Denotes number of events at P_{i} that precede a
\square When P_{j} receives message m from P_{i} with timestamp ts $(m)=\mathrm{VC}_{\mathrm{i}}$ P_{j} knows about the number of events at P_{i} that causally preceded m
- Also, P_{j} knows about how many events at other processes have preceded the sending of m, and on which m may causally depend

Vector clocks: Disadvantages

Storage and message payload is proportional to N , the number of processes
\square It's been shown ([Charron-Bost 1991]) that if we are to tell if two events are concurrent by inspecting timestamps?
\square The dimension of N is unavoidable

Contrasting totally-ordered and causally-ordered multicasting

\square Causally-ordered multicasting is weaker than totally-ordered multicasting
\square If two messages are not in any way related to each other?
We do not care about the order in which they are delivered to applications
Could be delivered in different order at different applications

Using Vector Clocks for causally-ordered multicasting

\square Clocks are ONLY adjusted when sending and receiving messages
\square Upon sending a message, process P_{i} will only increment $\mathrm{VC}_{\mathrm{i}}[\mathrm{i}]$ by 1
\square When P_{i} delivers a message m with timestamp $t s(m)$ it adjusts $\mathrm{VC}_{\mathrm{i}}[\mathrm{k}]$ \square To $\max \left(\mathrm{VC}_{\mathrm{i}}[\mathrm{k}], t s(m)[\mathrm{k}]\right)$ for each k

When process P_{j} receives a message m from P_{i}

Delivery of the message m to the application layer is delayed until 2 conditions are met:
(1) $t s(m)[\mathrm{i}]=\mathrm{VC}_{\mathrm{j}}[\mathrm{i}]+1$

- This means m is the next message that P_{j} was expecting from P_{i}
(2) $t s(m)[\mathrm{k}] \leq \mathrm{VC}_{\mathrm{j}}[\mathrm{k}]$ for all $k \neq i$
- This means that P_{j} has seen all messages that have been seen by P_{i} when it receives m

An example showing enforcement of causal

 communications
[Errata fixed on this slide.]

Matrix clocks

Generalizes the notion of vector clocks
Processes keep estimates of other processes' vector time [Raynal \& Singhal, 1996]
\square Essentially, a vector of vector clocks for each of the communicating processes

The contents of this slide-set are based on the following references

- Distributed Systems: Principles and Paradigms. Andrew S. Tanenbaum and Maarten Van der Steen. 2nd Edition. Prentice Hall. ISBN: 0132392275/978-0132392273. [Chapter 6]
\square Distributed Systems: Concepts and Design. George Coulouris, Jean Dollimore, Tim Kindberg, Gordon Blair. 5th Edition. Addison Wesley. ISBN: 978-0132143011. [Chapter 14]
- http://en.wikipedia.org/wiki/Matrix_clocks

