
SLIDES CREATED BY: SHRIDEEP PALLICKARA L34.1

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CS X55: DISTRIBUTED SYSTEMS [LOGICAL CLOCKS]

Shrideep Pallickara
Computer Science

Colorado State University

1

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.2

Topics covered in this lecture

¨ Logical clocks

¨ Vector clocks
¨ Matrix clocks

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L34.2

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

LOGICAL CLOCKS

3

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.4

Physical time in a distributed system is problematic

¨ This is not because of the effects of special relativity, which are
negligible or non-existent for normal computers
¤ Unless you count computers travelling in spaceships

¨ It is because of the inability to accurately timestamp events at different
nodes
¤ We need this to order any pairs of events

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L34.3

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.5

If two processes do not interact with each other?

¨ Their clocks need not be synchronized

¨ Lack of synchronization is not observable
¤ Does not cause problems

5

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.6

Logical clocks

¨ Within a single process, events are ordered uniquely by times shown
on local clock

¨ But we cannot synchronize clocks perfectly across a distributed system
[Lamport 1978]
¤ We cannot use physical time to find out the order of an arbitrary pair of

events in a distributed system

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L34.4

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.7

We can use a scheme that is similar to physical
causality to order events

① If two events occurred at the same process pi (i=1, 2, …, N) ?
¤ Then they occurred in the order in which pi observes them

n This is the order ài

② When a message is sent between processes?
¤ The event of sending the message occurred before the event of receiving the

message

7

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.8

The à relation

¨ Lamport called the partial ordering obtained by generalizing the
previous 2 relationships
¤ The happened-before or happens-before relation

¨ Sometimes also known as the relation of causal ordering or potential
causal ordering

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L34.5

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.9

Lamport’s logical clocks

¨ The happens-before relation è

¨ a and b are events in the process; and a occurs before b
¤ Then a è b is true

¨ a is event of message sent by one process;
b is event of message being received in another process
n Then a è b is true

9

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.10

Some more things about the happens-before relation

¨ If a è b and b è c; then a è c
¤ Transitive

¨ If events x and y occur in processes that do not exchange messages,
then …
¤ x è y is not true
¤ But, neither is y è x
¤ These events are said to be concurrent

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L34.6

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.11

Events occurring at three processes
X

Y

Z

a

c

e f

d

b

q a à b and c à d
– These occur within the same process

q b à c and d à f
– Events that correspond to sending and receiving messages

q We can use transitivity to say a à f
q No relationship between a and e; these are concurrent a || e

11

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.12

If the à relation holds between two processes

¨ The first event might or might-not have caused the second
¤ The à relation only captures potential causality

n i.e. two events can be related by à without a real connection between them

¨ EXAMPLE 1: If the server receives a request and sends a response?
¤ Then reply is caused by the request

¨ EXAMPLE 2: A process might receive a request and subsequently issue
another message
¤ But this could be one that it issues every 5 minutes anyway

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L34.7

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.13

A simple example of Lamport timestamps

X

Y

Z

1

3

1 5

4

2

13

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.14

An example of Lamport’s algorithm:

0
6
12
18
24
30
36
42
48
54
60

0
8
16
24
32
40
48
56
64
72
80

0
10
20
30
40
50
60
70
80
90
100

m1

m
2

Each clock runs at a constant (but different rate)

m
3

m
4

Each message carries the
sending time according to
the sender’s clock

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L34.8

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.15

An example of Lamport’s algorithm:

0
6
12
18
24
30
36
42
48

0
8
16
24
32
40
48

0
10
20
30
40
50
60
70
80
90
100

m1

m
2

Each clock runs at a constant (but different rate)

m
3

m
4

61
69
77
85

70
76

Each message carries the
sending time according to
the sender’s clock

15

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.16

Implementing Lamport’s clocks

① Before executing an event; Pi executes
 Ci = Ci + 1

② When Pi sends a message m to Pj ; it sets m’s timestamp ts(m) to Ci
in previous step

③ Upon receipt of message m, Pj adjusts its own local counter
 Cj = max {Cj, ts(m)}
do step (1) and deliver message

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L34.9

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.17

The positioning of Lamport’s clocks in distributed
systems

Middleware sends message

MIDDLEWARE LAYER

APPLICATION LAYER

NETWORK LAYER

Message is received

Adjust local clock and
timestamp message

Adjust local clock

Application sends message Message is delivered to
application

17

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.18

An application of Lamport’s clock:
User has $1000 in bank account initially

REPLICATED DATABASE

San Francisco New York

Add $100 to account Update with 1% interest

Add $100 …. Total:$1100
Give 1% interest on total= $11
Balance: $1111

Give 1% interest … Total= $1010
Add $100
Balance: $1110

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L34.10

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.19

There is a difference when the orders are reversed

¨ Our objective for now is consistency

¨ Both copies must be exactly the same

19

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.20

Use Lamport’s clock to order messages

¨ Process puts received messages into local queue
¤ Ordered according to the message’s timestamp

¨ Message can be delivered only if it is acknowledged by all the other
processes

¨ If a message is at the head of the queue, and acknowledged by all
processes
¤ It is delivered and processed

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L34.11

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.21

Lamport’s Clocks order events based on the
happened-before relationship

¨ If a happened before b, then C(a) < C(b)

¨ But nothing can be said about two events a and b by merely
comparing their values

¨ C(a) < C(b)?
¤ Does not mean a happened before b

21

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.22

Let’s look a little closer

¨ Tsnd(mi) : Time mi was sent

¨ Trcv(mi) : Time mi was received

¨ Tsnd(mi) < Trcv(mi)
¨ BUT

¤ Tsnd(mi) < Trcv(mj) ?
n NO

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L34.12

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.23

Concurrent message transmissions

0
6
12
18
24
30
36
42
48
70
76

0
8
16
24
32
40
48
61
69
77
85

0
10
20
30
40
50
60
70
80
90
100

m1

m
3

m
4

m
5

m2

Sending m3 MAY HAVE
 depended on m1

Trcv(m1) < Tsnd(m2)

But sending of m2 has nothing
to do with receipt of m1

Lamport clocks do not capture
causality

23

COMPUTER SCIENCE DEPARTMENT

VECTOR CLOCKS

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L34.13

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.25

Lamport’s Clocks order events based on the
happened-before relationship

¨ If a happened before b, then C(a) < C(b)

¨ But nothing can be said about two events a and b by merely
comparing their values

¨ C(a) < C(b)?
¤ Does not mean a happened before b

25

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.26

Let’s look a little closer

¨ Tsnd(mi) : Time mi was sent

¨ Trcv(mi) : Time mi was received

¨ Tsnd(mi) < Trcv(mi)
¨ BUT

¤ Tsnd(mi) < Trcv(mj) ?
n NO

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L34.14

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.27

Concurrent message transmissions

0
6
12
18
24
30
36
42
48
70
76

0
8
16
24
32
40
48
61
69
77
85

0
10
20
30
40
50
60
70
80
90
100

m1

m
3

m
4

m
5

m2

Sending m3 MAY HAVE
 depended on m1

Trcv(m1) < Tsnd(m2)

But sending of m2 has nothing
to do with receipt of m1

Lamport clocks do not capture
causality

27

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.28

Vector clocks

¨ Developed by Mattern [1989] and Fidge [1991] to overcome
shortcomings of Lamport’s clocks
¤ i.e. if C(a) < C(b) then we cannot conclude a à b

¨ A vector clock for a system of N processes is an array of N integers

¨ Each process keeps its own vector clock VCi
¤ Process uses it vector clock to timestamp messages

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L34.15

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.29

Causal precedence can be captured by Vector
clocks

¨ Event a is known to causally precede event b iff VC(a) < VC(b)
¤ VC(a)<VC(b) iff VC(a)[k] ≤ VC(b)[k] for all k and at least one of those

relationships is strictly smaller

¨ Each process Pi maintains a vector VCi

¨ VCi[i] is number of events so far at Pi

¨ If VCi[j] = k
¤ Pi knows k events occurred at Pj

¤ Pi’s knowledge of local time at Pj

29

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.30

Vectors are piggybacked along with any messages
that are sent

① Before executing an event (sending, delivering, or internal) Pi
executes
¤ VCi[i] = VCi[i] + 1

② When Pi sends a message m to Pj
¤ Set m’s timestamp ts(m) to VCi after doing (1)

③ After receiving m, process Pj adjusts its vector
¤ VCj[k] = max{VCj[k], ts(m)[k]} for each k
¤ Execute step (1) and deliver

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L34.16

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.31

Vector clocks example 1

A

B

C

[1,0,0]

[2,1,0]

[0,0,1] [2,2,2]

[2,2,0]

[2,0,0]

31

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.32

Vector clocks example 2

A

B

C

[1,0,0]

[1,2,0]

[1,3,3] [1,3,4]

[1,3,0]

[1,4,0]

[5,4,0] [7,4,4]

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L34.17

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.33

Vector timestamps allow us to determine causality
and concurrency

¨ Event a happened before event b iff
• ts(a) ≤ ts (b) for each process i
• And one of those relationships is strictly smaller

¨ If this is not true
¤ Events a and b are concurrent

33

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.34

Vector Clocks: Other aspects

¨ If event a has timestamp, ts(a):
¤ ts(a)[i]–1

n Denotes number of events at Pi that precede a

¨ When Pj receives message m from Pi with timestamp ts(m)=VCi
¤ Pj knows about the number of events at Pi that causally preceded m
¤ Also, Pj knows about how many events at other processes have preceded the

sending of m, and on which m may causally depend

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L34.18

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.35

Vector clocks: Disadvantages

¨ Storage and message payload is proportional to N, the number of
processes

¨ It’s been shown ([Charron-Bost 1991]) that if we are to tell if two
events are concurrent by inspecting timestamps?
¤ The dimension of N is unavoidable

35

COMPUTER SCIENCE DEPARTMENT

USING VECTOR CLOCKS FOR CAUSALLY ORDERED
MULTICASTING

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L34.19

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.37

Contrasting totally-ordered and causally-ordered
multicasting

¨ Causally-ordered multicasting is weaker than totally-ordered
multicasting

¨ If two messages are not in any way related to each other?
¤ We do not care about the order in which they are delivered to applications
¤ Could be delivered in different order at different applications

37

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.38

Using Vector Clocks for causally-ordered multicasting

¨ Clocks are ONLY adjusted when sending and receiving messages

¨ Upon sending a message, process Pi will only increment VCi[i] by 1

¨ When Pi delivers a message m with timestamp ts(m) it adjusts VCi[k]
¤ To max(VCi[k], ts(m)[k]) for each k

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L34.20

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.39

When process Pj receives a message m from Pi

¨ Delivery of the message m to the application layer is delayed until 2
conditions are met:
① ts(m)[i] = VCj[i] + 1

n This means m is the next message that Pj was expecting from Pi

② ts(m)[k] ≤ VCj[k] for all k ≠ i
n This means that Pj has seen all messages that have been seen by Pi when it

receives m

39

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.40

An example showing enforcement of causal
communications

A

B

C

[1,0,0]

[0,0,0] VC2=[1,0,0]

[1,1,0]

[1,1,0]

m

VC2=[1,1,0]

m*

Delivery of m* is delayed until m is delivered

[1,0,0]

[Errata fixed on this slide.]

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L34.21

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.41

Matrix clocks

¨ Generalizes the notion of vector clocks

¨ Processes keep estimates of other processes’ vector time [Raynal &
Singhal, 1996]

¨ Essentially, a vector of vector clocks for each of the communicating
processes

41

LOGICAL CLOCKSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L34.42

The contents of this slide-set are based on the
following references
¨ Distributed Systems: Principles and Paradigms. Andrew S. Tanenbaum and Maarten Van

der Steen. 2nd Edition. Prentice Hall. ISBN: 0132392275/978-0132392273.
[Chapter 6]

¨ Distributed Systems: Concepts and Design. George Coulouris, Jean Dollimore, Tim
Kindberg, Gordon Blair. 5th Edition. Addison Wesley. ISBN: 978-0132143011.
[Chapter 14]

¨ http://en.wikipedia.org/wiki/Matrix_clocks

42

