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Threads block when they can’t get that lock
Wanna have your threads stall?
      Go ahead, synchronize it all

The antidote to this liveness pitfall?
      Keeping the lock scope small
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Frequently asked questions from the previous class 
survey

¨ Typical cache hit rates?

¨ What if a thread does not fully utilize its allocated local mini heap? Is 
that not inefficient?

¨ A thread T1can execute instructions that belong to some other Thread 
object T2?

¨ Is liveness stall same as a deadlock?

¨ Threads create threads? Is that the only way?
¨ How does blocking occur with a blocking call?
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Topics covered in this lecture

¨ Threads
¤ Thread Lifecycle

¨ Data synchronization
¨ Synchronized blocks

¨ Lock scope

3

COMPUTER SCIENCE DEPARTMENT

STOPPING A THREAD

4



SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.3

CSx55: Distributed Systems 
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.5

Two approaches to stopping a thread

¨ Setting a flag

¨ Interrupting a thread
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Stopping a Thread: Setting a flag

¨ Set some internal flag to signal that the thread should stop

¨ Thread periodically queries the flag to determine if it should exit
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Stopping a Thread: Setting a flag

public class RandomGen extends Thread {
   private volatile boolean done = false;

   public void run() {
     while (!done) {
        ...
     }
   }

   public void setDone() {
      done = true;
   }
}

run() method investigates the state of the done variable on every loop. 
Returns when the done flag has been set.
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Interrupting a thread

¨ In the previous slide, there may be a delay in the setDone() being 
invoked & thread terminating
¤ Some statements are executed after setDone() and before the value of 
done is checked

¤ In the worst case, setDone() is called right after the the done variable 
was checked

¨ Delays while waiting for a thread to terminate are inevitable
¤ But it would be good if they could be minimized 
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Interrupting a thread

¨ When we arrange for thread to terminate, we:
¤ Want it to complete its blocking method immediately
¤ Don’t wish to wait for the data (or …) because the thread will exit 

¨ Use interrupt() method of the Thread class to interrupt any 
blocking method

9

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.10

Effects of the interrupt method

¨ Causes blocked method to throw an InterruptedException
¤ sleep(), wait(), join(), and methods to read I/O

¨ Sets a flag inside the thread object to indicate that the thread has 
been interrupted
¤ Queried using isInterrupted()

n Returns true if it was interrupted, even though it was not blocked
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Stopping a thread: Using interrupts

public class RandomGen extends Thread {
   
   public void run() {
     while (!isInterrupted()) {
        ...
     }
   }

}

radomGeneratorThread.interrupt()

11

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.12

The Runnable interface

¨ Allows separation of the implementation of the task from the thread 
used to run task

public interface Runnable {
  
   public void run(); 

}
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Creation of a thread using the Runnable interface

¨ Construct the thread
¤ Pass runnable object to the thread’s constructor

¨ Start the thread
¤ Instead of starting the runnable object
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Creation of a thread using the Runnable interface

public class RandomGenerator implements Runnable {
  
   public void run() { ... }

}

...
     generator = new RandomGenerator();
     Thread createdThread = new Thread(generator);
     createdThread.start();

14



SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.8

CSx55: Distributed Systems 
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.15

When to use Runnable and Thread

¨ If you would like your class to inherit behavior from the Thread class
¤ Extend Thread

¨ If your class needs to inherit from other classes
¤ Implement Runnable
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If you extend the Thread class?

¨ You inherit behavior and methods of the Thread class
¤ The interrupt() method is part of the Thread class
¤ You can interrupt() if you extend 
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Advantages of using the Runnable interface

¨ Java provides several classes that handle threading for you
¤ Implement pooling, scheduling, or timing
¤ These require the Runnable interface
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But what if I still can’t decide?

¨ Do a UML (Unified Modeling Language) model of your application

¨ The object hierarchy tells you what you need: 
¤ If your task needs to subclass another class?

n Use Runnable

¤ If you need to use methods of Thread within your class?
n Use Thread
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Threads and Objects

¨ Instance of the Thread class is just an object
¤ Can be passed to other methods
¤ If a thread has a reference to another thread

n It can invoke any method of that thread’s object

¨ The Thread object is not the thread itself
¤ It is the set of methods and data that encapsulate information about the 

thread
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But what does this mean?

¨ You cannot look at the object source and know which thread is:
¤ Executing its methods or examining its data 

¨ You may wonder about which thread is running the code, but …
¤ There may be many possibilities
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Determining the current thread

¨ Code within a thread object might want to see that code is being 
executed either:
¤ By thread represented by the object or
¤ By a completely different thread

¨ Retrieve reference to current thread
¤ Thread.currentThread()

¤ Static method

21

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.22

Checking which thread is executing the code
public class MyThread extends Thread {
  
   public void run() { 
      if (Thread.currentThread() != this) {
         throw new IllegalStateException
            (“Run method called by incorrect thread …);
      } /* end if */
      
      ... Main logic
   }

}
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Allowing a Runnable object to see if it has been 
interrupted

public class MyRunnable implements Runnable {
  
   public void run() { 
      if (!Thread.currentThread().isInterrupted() ) {     
            ... Main logic
      }
   }

}
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Heisenbugs

¨ Term coined by ACM Turing Award winner Jim Gray
¤ Pun on the name of Werner Heisenberg
¤ Act of observing a system, alters its state!

¨ Describes a particular class of bugs
¤ Those that disappear or change behavior when you try to examine them

¨ Multithreaded programs are a common source of Heisenbugs
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What about regular bugs?

¨ Sometimes referred to as Bohr bugs
¤ Deterministic
¤ Generally, much easier to diagnose
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Two friends plan to meet at Starbucks
But there are two Starbucks on College Avenue 

@ the First Starbucks Store @ the Second Starbucks Store

12:10 A is looking for friend B
12:15 A leaves for the second store

12:20 B arrives at store

12:30

12:40

A arrives at store
B leaves for the first store
B is looking for friend A

B is Looking for friend A A is looking for friend B

A leaves for the first storeB leaves for the second store

Both friends are now frustrated and undercaffeinated!
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Why sharing data between threads is problematic

¨ Race conditions
¤ Correct outcome depends on lucky timing of uncontrollable events 

¨ Threads attempt to access data more or less simultaneously
¤ A thread may change the value of data that some other thread is operating 

on
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Example code with race condition
public class MyThread extends Thread { 
   private byte[] values;
   private int position;

   public void 
      modifyData(byte[] newValues, int newPosition) {
      ... Modify values and position
   }

   public void utilizeDataAndPerformFunction() {
      ... Use values and position
   }
      
   public void run() { 
     ... Main logic
   }
}
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In the previous snippet a race condition exists 
because …

¨ The thread that calls modifyData() is accessing the same data as 
the thread that calls utilizeDataAndPerformFunction()

¨ utilizeDataAndPerformFunction() and modifyData() are not 
atomic
¤ It is possible that values and position are changed while they are 

being used
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What is atomic?

¨ The code cannot be interrupted during its execution
¤ Accomplished in hardware or simulated in software

¨ Code that cannot be found in an intermediate state
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Eliminating the race condition using the synchronized
keyword

¨ If we declared both modifyData() and  
utilizeDataAndPerformFunction() as synchronized?

¤ Only one thread gets to call either method at a time
n Only one thread accesses data at a time

¤ When one thread calls one of these methods, while another is executing one 
of them?
n The second thread must wait
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Example code with no race conditions by using the 
synchronized keyword

public class MyThread extends Thread { 
   private byte[] values;
   private int position;

   public void synchronized
      modifyData(byte[] newValues, int newPosition) {
      ... Modify values and position
   }

   public void synchronized 
      utilizeDataAndPerformFunction() {
      ... Use values and position
   }
      
   public void run() { 
     ... Main logic
   }
}
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Revisiting the mutex lock

¨ Mutually exclusive lock

¨ If two threads try to grab a mutex?
¤ Only one succeeds

¨ In Java, every object has an associated lock
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When a method is declared synchronized …

¨ The thread that wants to execute the method must acquire a lock

¨ Once the thread has acquired the lock?
¤ It executes method and releases the lock

¨ When a method returns, the lock is released
¤ Even if the return is because of an exception

36



SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.19

CSx55: Distributed Systems 
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.37

Locks and objects

¨ There is only one lock per object

¨ If two threads call synchronized methods of the same object?
¤ Only one can execute immediately

n The other has to wait until the lock is released
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SYNCHRONIZATION PITFALLS

Afraid of what the truth might bring
He locks his doors and never leaves
Desperately searching for signs
To terrify, to find a thing
He battens all the hatches down
And wonders why he hears no sound
Frantically searching his dreams
He wonders what it's all about

Telescope, Cage the Elephant
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Another code snippet to look at … 

public class MyThread extends Thread { 
   private boolean done = false;

   public void run() { 
     while (!done) {
        ... Main logic
     }
   }

   public void setDone(boolean isDone) {
     done = isDone;
   }
}
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Can’t we just synchronize the two methods as we did 
previously?

¨ If we synchronized both run() and setDone() ?
¤ setDone() would never execute!

¨ The run() method does not exit until the done flag is set
¤ But the done flag cannot be set because setDone() cannot execute till 
run() completes

¨ Uh oh …
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The problem stems from the scope of the lock

¨ Scope of a lock
¤ Period between grabbing and releasing a lock

¨ Scope of the run() method is too large!
¤ Lock is grabbed and never released

¨ We will look at techniques to shrink the scope of the lock

¨ But let’s look at another solution for now
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Let’s look at operations performed on the data item 
(done)

¨ The setDone() method stores a value into the flag

¨ The run() method reads the value

¨ In our previous example:
¤ Threads were accessing multiple pieces of data
¤ No way to update multiple data items atomically without the 
synchronized keyword

42



SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.22

CSx55: Distributed Systems 
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.43

But Java specifies that the loading and storing of 
variables is atomic

¨ Except for long and double variables

¨ The setDone() should be atomic
¤ The run() method has only one read operation of the data item

¨ The race condition should not exist
¤ But why is it there?
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Threads are allowed to hold values of variables in 
registers

¨ When one thread changes the value of the variable?
¤ Another thread may not see the changed variable

¨ This is particularly true in loops controlled by a variable
¤ Looping thread loads value of variable in register and does not notice

when value is changed by another thread
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Two approaches to solving this

¨ Providing setter and getter methods for variable and using the 
synchronized keyword
¤ When lock is acquired, temporary values stored in registers are flushed to 

main memory

¨ The volatile keyword
¤ Much cleaner solution
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If a variable is marked as volatile

¨ Every time it is used?
¤ Must be read from main memory

¨ Every time it is written?
¤ Must be written to main memory

¨ Load and store operations are atomic
¤ Even for long and double variables

46



SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.24

CSx55: Distributed Systems 
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.47

Some more about volatile variables

¨ Prior to JDK 1.2 variables were always read from main memory
¤ Using volatile variables was moot

¨ Subsequent versions introduced memory models and optimizations
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Synchronization and the volatile keyword

¨ Can be used only when operations use a single load and store
¤ Operations like ++, --?

n Load-change-store …

¨ The volatile keyword forces the JVM to not make temporary 
copies of a variable

¨ Declaring an array volatile?
¤ The reference becomes volatile
¤ The individual elements are not volatile
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The contents of this slide-set are based on the 
following references
¨ Java Threads. Scott Oaks and Henry Wong. . 3rd Edition. O’Reilly Press. ISBN: 0-596-

00782-5/978-0-596-00782-9. [Chapters 3, 4]
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