
SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.1

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CSX55: DISTRIBUTED SYSTEMS [THREADS]

Shrideep Pallickara
Computer Science

Colorado State University

Threads block when they can’t get that lock
Wanna have your threads stall?
 Go ahead, synchronize it all

The antidote to this liveness pitfall?
 Keeping the lock scope small

1

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.2

Frequently asked questions from the previous class
survey

¨ Typical cache hit rates?

¨ What if a thread does not fully utilize its allocated local mini heap? Is
that not inefficient?

¨ A thread T1can execute instructions that belong to some other Thread
object T2?

¨ Is liveness stall same as a deadlock?

¨ Threads create threads? Is that the only way?
¨ How does blocking occur with a blocking call?

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.2

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.3

Topics covered in this lecture

¨ Threads
¤ Thread Lifecycle

¨ Data synchronization
¨ Synchronized blocks

¨ Lock scope

3

COMPUTER SCIENCE DEPARTMENT

STOPPING A THREAD

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.3

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.5

Two approaches to stopping a thread

¨ Setting a flag

¨ Interrupting a thread

5

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.6

Stopping a Thread: Setting a flag

¨ Set some internal flag to signal that the thread should stop

¨ Thread periodically queries the flag to determine if it should exit

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.4

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.7

Stopping a Thread: Setting a flag

public class RandomGen extends Thread {
 private volatile boolean done = false;

 public void run() {
 while (!done) {
 ...
 }
 }

 public void setDone() {
 done = true;
 }
}

run() method investigates the state of the done variable on every loop.
Returns when the done flag has been set.

7

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.8

Interrupting a thread

¨ In the previous slide, there may be a delay in the setDone() being
invoked & thread terminating
¤ Some statements are executed after setDone() and before the value of
done is checked

¤ In the worst case, setDone() is called right after the the done variable
was checked

¨ Delays while waiting for a thread to terminate are inevitable
¤ But it would be good if they could be minimized

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.5

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.9

Interrupting a thread

¨ When we arrange for thread to terminate, we:
¤ Want it to complete its blocking method immediately
¤ Don’t wish to wait for the data (or …) because the thread will exit

¨ Use interrupt() method of the Thread class to interrupt any
blocking method

9

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.10

Effects of the interrupt method

¨ Causes blocked method to throw an InterruptedException
¤ sleep(), wait(), join(), and methods to read I/O

¨ Sets a flag inside the thread object to indicate that the thread has
been interrupted
¤ Queried using isInterrupted()

n Returns true if it was interrupted, even though it was not blocked

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.6

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.11

Stopping a thread: Using interrupts

public class RandomGen extends Thread {

 public void run() {
 while (!isInterrupted()) {
 ...
 }
 }

}

radomGeneratorThread.interrupt()

11

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.12

The Runnable interface

¨ Allows separation of the implementation of the task from the thread
used to run task

public interface Runnable {

 public void run();

}

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.7

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.13

Creation of a thread using the Runnable interface

¨ Construct the thread
¤ Pass runnable object to the thread’s constructor

¨ Start the thread
¤ Instead of starting the runnable object

13

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.14

Creation of a thread using the Runnable interface

public class RandomGenerator implements Runnable {

 public void run() { ... }

}

...
 generator = new RandomGenerator();
 Thread createdThread = new Thread(generator);
 createdThread.start();

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.8

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.15

When to use Runnable and Thread

¨ If you would like your class to inherit behavior from the Thread class
¤ Extend Thread

¨ If your class needs to inherit from other classes
¤ Implement Runnable

15

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.16

If you extend the Thread class?

¨ You inherit behavior and methods of the Thread class
¤ The interrupt() method is part of the Thread class
¤ You can interrupt() if you extend

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.9

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.17

Advantages of using the Runnable interface

¨ Java provides several classes that handle threading for you
¤ Implement pooling, scheduling, or timing
¤ These require the Runnable interface

17

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.18

But what if I still can’t decide?

¨ Do a UML (Unified Modeling Language) model of your application

¨ The object hierarchy tells you what you need:
¤ If your task needs to subclass another class?

n Use Runnable

¤ If you need to use methods of Thread within your class?
n Use Thread

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.10

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.19

Threads and Objects

¨ Instance of the Thread class is just an object
¤ Can be passed to other methods
¤ If a thread has a reference to another thread

n It can invoke any method of that thread’s object

¨ The Thread object is not the thread itself
¤ It is the set of methods and data that encapsulate information about the

thread

19

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.20

But what does this mean?

¨ You cannot look at the object source and know which thread is:
¤ Executing its methods or examining its data

¨ You may wonder about which thread is running the code, but …
¤ There may be many possibilities

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.11

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.21

Determining the current thread

¨ Code within a thread object might want to see that code is being
executed either:
¤ By thread represented by the object or
¤ By a completely different thread

¨ Retrieve reference to current thread
¤ Thread.currentThread()

¤ Static method

21

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.22

Checking which thread is executing the code
public class MyThread extends Thread {

 public void run() {
 if (Thread.currentThread() != this) {
 throw new IllegalStateException
 (“Run method called by incorrect thread …);
 } /* end if */

 ... Main logic
 }

}

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.12

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.23

Allowing a Runnable object to see if it has been
interrupted

public class MyRunnable implements Runnable {

 public void run() {
 if (!Thread.currentThread().isInterrupted()) {
 ... Main logic
 }
 }

}

23

COMPUTER SCIENCE DEPARTMENT

BUGS

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.13

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.25

Heisenbugs

¨ Term coined by ACM Turing Award winner Jim Gray
¤ Pun on the name of Werner Heisenberg
¤ Act of observing a system, alters its state!

¨ Describes a particular class of bugs
¤ Those that disappear or change behavior when you try to examine them

¨ Multithreaded programs are a common source of Heisenbugs

25

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.26

What about regular bugs?

¨ Sometimes referred to as Bohr bugs
¤ Deterministic
¤ Generally, much easier to diagnose

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.14

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.27

Two friends plan to meet at Starbucks
But there are two Starbucks on College Avenue

@ the First Starbucks Store @ the Second Starbucks Store

12:10 A is looking for friend B
12:15 A leaves for the second store

12:20 B arrives at store

12:30

12:40

A arrives at store
B leaves for the first store
B is looking for friend A

B is Looking for friend A A is looking for friend B

A leaves for the first storeB leaves for the second store

Both friends are now frustrated and undercaffeinated!

27

COMPUTER SCIENCE DEPARTMENT

DATA SYNCHRONIZATION

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.15

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.29

Why sharing data between threads is problematic

¨ Race conditions
¤ Correct outcome depends on lucky timing of uncontrollable events

¨ Threads attempt to access data more or less simultaneously
¤ A thread may change the value of data that some other thread is operating

on

29

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.30

Example code with race condition
public class MyThread extends Thread {
 private byte[] values;
 private int position;

 public void
 modifyData(byte[] newValues, int newPosition) {
 ... Modify values and position
 }

 public void utilizeDataAndPerformFunction() {
 ... Use values and position
 }

 public void run() {
 ... Main logic
 }
}

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.16

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.31

In the previous snippet a race condition exists
because …

¨ The thread that calls modifyData() is accessing the same data as
the thread that calls utilizeDataAndPerformFunction()

¨ utilizeDataAndPerformFunction() and modifyData() are not
atomic
¤ It is possible that values and position are changed while they are

being used

31

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.32

What is atomic?

¨ The code cannot be interrupted during its execution
¤ Accomplished in hardware or simulated in software

¨ Code that cannot be found in an intermediate state

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.17

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.33

Eliminating the race condition using the synchronized
keyword

¨ If we declared both modifyData() and
utilizeDataAndPerformFunction() as synchronized?

¤ Only one thread gets to call either method at a time
n Only one thread accesses data at a time

¤ When one thread calls one of these methods, while another is executing one
of them?
n The second thread must wait

33

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.34

Example code with no race conditions by using the
synchronized keyword

public class MyThread extends Thread {
 private byte[] values;
 private int position;

 public void synchronized
 modifyData(byte[] newValues, int newPosition) {
 ... Modify values and position
 }

 public void synchronized
 utilizeDataAndPerformFunction() {
 ... Use values and position
 }

 public void run() {
 ... Main logic
 }
}

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.18

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.35

Revisiting the mutex lock

¨ Mutually exclusive lock

¨ If two threads try to grab a mutex?
¤ Only one succeeds

¨ In Java, every object has an associated lock

35

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.36

When a method is declared synchronized …

¨ The thread that wants to execute the method must acquire a lock

¨ Once the thread has acquired the lock?
¤ It executes method and releases the lock

¨ When a method returns, the lock is released
¤ Even if the return is because of an exception

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.19

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.37

Locks and objects

¨ There is only one lock per object

¨ If two threads call synchronized methods of the same object?
¤ Only one can execute immediately

n The other has to wait until the lock is released

37

COMPUTER SCIENCE DEPARTMENT

SYNCHRONIZATION PITFALLS

Afraid of what the truth might bring
He locks his doors and never leaves
Desperately searching for signs
To terrify, to find a thing
He battens all the hatches down
And wonders why he hears no sound
Frantically searching his dreams
He wonders what it's all about

Telescope, Cage the Elephant

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.20

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.39

Another code snippet to look at …

public class MyThread extends Thread {
 private boolean done = false;

 public void run() {
 while (!done) {
 ... Main logic
 }
 }

 public void setDone(boolean isDone) {
 done = isDone;
 }
}

39

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.40

Can’t we just synchronize the two methods as we did
previously?

¨ If we synchronized both run() and setDone() ?
¤ setDone() would never execute!

¨ The run() method does not exit until the done flag is set
¤ But the done flag cannot be set because setDone() cannot execute till
run() completes

¨ Uh oh …

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.21

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.41

The problem stems from the scope of the lock

¨ Scope of a lock
¤ Period between grabbing and releasing a lock

¨ Scope of the run() method is too large!
¤ Lock is grabbed and never released

¨ We will look at techniques to shrink the scope of the lock

¨ But let’s look at another solution for now

41

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.42

Let’s look at operations performed on the data item
(done)

¨ The setDone() method stores a value into the flag

¨ The run() method reads the value

¨ In our previous example:
¤ Threads were accessing multiple pieces of data
¤ No way to update multiple data items atomically without the
synchronized keyword

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.22

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.43

But Java specifies that the loading and storing of
variables is atomic

¨ Except for long and double variables

¨ The setDone() should be atomic
¤ The run() method has only one read operation of the data item

¨ The race condition should not exist
¤ But why is it there?

43

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.44

Threads are allowed to hold values of variables in
registers

¨ When one thread changes the value of the variable?
¤ Another thread may not see the changed variable

¨ This is particularly true in loops controlled by a variable
¤ Looping thread loads value of variable in register and does not notice

when value is changed by another thread

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.23

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.45

Two approaches to solving this

¨ Providing setter and getter methods for variable and using the
synchronized keyword
¤ When lock is acquired, temporary values stored in registers are flushed to

main memory

¨ The volatile keyword
¤ Much cleaner solution

45

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.46

If a variable is marked as volatile

¨ Every time it is used?
¤ Must be read from main memory

¨ Every time it is written?
¤ Must be written to main memory

¨ Load and store operations are atomic
¤ Even for long and double variables

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.24

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.47

Some more about volatile variables

¨ Prior to JDK 1.2 variables were always read from main memory
¤ Using volatile variables was moot

¨ Subsequent versions introduced memory models and optimizations

47

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.48

Synchronization and the volatile keyword

¨ Can be used only when operations use a single load and store
¤ Operations like ++, --?

n Load-change-store …

¨ The volatile keyword forces the JVM to not make temporary
copies of a variable

¨ Declaring an array volatile?
¤ The reference becomes volatile
¤ The individual elements are not volatile

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L4.25

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L4.49

The contents of this slide-set are based on the
following references
¨ Java Threads. Scott Oaks and Henry Wong. . 3rd Edition. O’Reilly Press. ISBN: 0-596-

00782-5/978-0-596-00782-9. [Chapters 3, 4]

49

