CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

CSx55: DISTRIBUTED SYSTEMS [THREADS]

The Tangible Lock
Have you a synchronized method?
The acquisition’s implicit
With the lock hiding in plain slight

Care for the lock to be tactile?
Use the Lock instead
But with responsibilities galore

Shrideep Pallickara

A recourse when drowning in bugs? Compufer Science
Tread carefully with how you lock() and unlock() . .
and ... reckon with them exceptions Colorado State Unlversny
COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY
1
Frequently asked questions from the previous class
survey
Does InterruptedException help with memory visibility like
volatile?
Are referenced objects flushed before lock acquisition?
If the isInterrupted() passes the check just before the first statement of
the loop, it completes the body?
How many threads can acquire the static synchronized class lock?
If you have ZERO blocking calls (with prolonged waiting durations) do
you need to interrupt?
Does the interrupt “detect” blocking calls?
COLORADD STATE UNIVERSITY (oreser S e errven THREADS L5.2
2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.1

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Topics covered in this lecture

Locks

Notifications

Wait-notify
3
SYNCHRONIZED METHODS & LOCKS
COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY
4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.2

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Synchronizing methods

Not possible to execute the same method in one thread while ...

Method is running in another thread

If two different synchronized methods in an object are called?

They both require the lock of the same object

Two or more synchronized methods of the same object can never run in
parallel in separate threads

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS L5.5

5

A lock is based on a specific instance of an object

Not on a particular method or class

Suppose we have 2 objects: objectA and ocbjectB with
synchronized methods modifyData () and utilizeData ()

One thread can execute objectA.modifyData () while another
executes objectB.utilizeData () in parallel
Two different locks are grabbed by two different threads

No need for threads to wait for each other

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.6

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.3

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

How does a synchronized method behave in
conjunction with an unsynchronized one?

1 Synchronized methods try to grab the object lock

Only 1 synchronized method in an object can run at a time ... provides data
protection

1 Unsynchronized methods
Don’t grab the object lock

Can execute at any time ... by any thread

m Regardless of whether a synchronized method is running

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS L57

7

For a given object, at any time ...
|

1 Any number of unsynchronized methods may be executing

71 But only 1 synchronized method can execute

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.8

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.4

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Synchronizing static methods

A lock can be obtained for each class

The class lock

The class lock is the object lock of the Class object that models the
class

There is only 1 Class object per class

Allows us to achieve synchronization for static methods

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS L5.9

9

Object locks and class locks

Are not operationally related

The class lock can be grabbed and released independently of the
object lock

If a non-static synchronized method calls a static synchronized method?

It acquires both locks

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY GOupUTER SCIENGE DEPARTMENT ~ THREADS L5.10

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.5

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Empty stares, from each corner of a shared prison cell
One just escapes, one’s left inside the well
And he who forgets, will be destined to remember

Nothingman, Eddie Vedder & Jeffrey Ament, Pearl Jam

EXPLICIT LOCKING

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

11

The synchronized keyword

Serializes accesses to synchronized methods in an object
Not suitable for controlling lock scope in certain situations

Can be too primitive in some cases

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.12

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.6

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Many synchronization schemes in J2SE 5.0 onwards
implement the Lock interface

Two important methods
lock () and unlock ()

Similar to using the synchronized keyword
Call 1ock () at the start of the method
Call unlock () at the end of the method

Difference: we have an actual object that represents the lock

Store, pass around, or discard

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS L5.13

13

Semantics of the using Lock

If another thread owns the lock

Thread that attempts to acquire the lock must wait until the other thread calls
unlock ()

Once the waiting thread acquires the lock, it returns from the 1ock ()
method

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.14

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.7

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Using the Lock interface

public class DataOpertor {

private Lock datalLock = new ReentrantLock() ;
public void

modifyData (byte[] newValues, int newPosition) {

try {

datalLock.lock() ;
. Modify values and position
} finally {
datalLock.unlock () ;

}
}

public void utilizeDataAndPerformFunction () {
try {
datalLock.lock() ;
. Use values and position
} finally {
dataLock.unlock () ;
}
}

COLORADO STATE UNIVERSITY Couputenr SOIENGE DEPARTMENT THREADS L5.15

15

Advantages of using the Lock interface

Grab and release locks whenever we want

Now possible for two objects to share the same lock

Lock is no longer attached to the object whose method is being called

Can be attached to data, groups of data, etc.

Not objects containing the executing methods

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.16

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.8

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Advantages of explicit locking

We can move them anywhere to adjust lock scope

Can span from a line of code to a scope that encompasses multiple methods
and objects

Lock at scope specific to problem
Not just the object

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS L5.17

17

SYNCHRONIZED BLOCKS

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.9

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Much of what we accomplish with the Lock we can do so with the

synchronized keyword

public class DataOperator ({
public void

synchronized (this) {
. Modify values and position
}
}

public void utilizeDataAndPerformFunction ()
synchronized (this) {
. Use values and position

}

modifyData (byte[] newValues, int newPosition)

{

Professor: SHRIDEEP PALLICKARA THREADS

COLORADO STATE UNIVERSITY CompuTER SCIENCE DEPARTMENT

L5.19

19

Synchronized methods vs. Synchronized Blocks

Possible to use only the synchronized block mechanism to synchronize

whole method

You decide when it’s best to synchronize a block of code or the whole

method

RULE: Establish as small a lock scope as possible

Prof : SHRIDEEP PALLICKARA
rofessor: § Cl THREADS

COLORADO STATE UNIVERSITY CompuTeER SCIENCE DEPARTMENT

L5.20

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.10

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

The Lock interface [java.util.concurrent.locks]

public interface Lock ({
public void lock();

public void lockInterruptibly ()
throws InterruptedException;

public boolean tryLock();
public boolean tryLock(long time, TimeUnit unit)
throws InterruptedException;

public void unlock();

public Condition newCondition () ;

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS

L5.21

21

Lock Fairness

ReentrantLock allows locks to be granted fairly

Locks are granted as close to arrival order as possible

Prevents lock starvation from happening

Possibilities for granting locks
(1) First-come-first-served
(2) Allows servicing the maximum number of requests

(3 Do what's best for the platform

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS

L5.22

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.11

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD NOTIFICATIONS

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

23

Objects and communications

Every object has a lock

Every object also includes mechanisms that allow it to be a waiting
area

Allows communication between threads

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.24

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.12

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Conditions

One thread needs a condition to exist

Assumes another thread will create that condition

When another thread creates the condition?

It notifies the first thread that has been waiting for that condition

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS L5.25

25

wait (), notify () and the Object class

public class Object {
public void wait () ;
public void wait (long timeout) ;

public void notify();

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.26

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.13

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

wait (), notify () and the Object class

Wait-and-notify mechanisms are available for every object

Accomplished by method invocations

Synchronized mechanism is handled by using a keyword

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS Ls.27

27

Wait-and-notify relate to synchronization, but ...

It is more of a communications mechanism

Allows one thread to communicate to another that a condition has
occurred

Does not specify what that specific condition is

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.28

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.14

CSx55: Distributed Systems

Dept. Of Computer Science, Colorado State University

mechanism?

No

solves

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS

Can wait-and-notify replace the synchronized

Does not solve the race condition that the synchronized mechanism

Must be used in conjunction with the synchronized lock

Prevents race condition that exists in the wait-notify mechanism itself

L5.29

29

execution of the thread

A code snippet that uses wait-notify to control the

public class Tester implements
private boolean done = true

public synchronized run() {
while (true) {
if (done) wait () ;
else { ... Logic ...

}
public synchronized void se
done = b;

if (!done) notify();

}

Runnable {

’

wait (100) ;}

tDone (boolean b)

{

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS

L5.30

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.15

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

About the wait () method

When wait () executes, the synchronization lock is released
By the JVM

When a notification is received?

The thread needs to reacquire the synchronization lock before returning from
wait ()

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS L5.31

31

Integration of wait-notify and synchronization

Tightly integrated with the synchronization lock

Feature not directly available to us

Not possible to implement this: native method

This is typical of approach in other libraries

Condition variables for Solaris and POSIX threads require that a mutex lock
be held

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.32

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.16

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Details of the race condition in the wait-notify
mechanism

The first thread tests the condition and confirms that it must wait
The second thread sets the condition

The second thread calls notify ()

This goes unheard because the first thread is not yet waiting

The first thread calls wait ()

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS L5.33

33

How does the potential race condition get resolved?

Tocall wait () ornotify ()

Obtain lock for the object on which this is being invoked

It seems as if the lock has been held for the entire wait () invocation,
but ...
(1) wait () releases lock prior to waiting

(2) Reacquires the lock just before returning from wait ()

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.34

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.17

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Is there a race condition during the time wait ()
releases and reacquires the lock?

o wait () is tightly integrated with the lock mechanism

11 Obiject lock is not freed until the waiting thread is in a state in which it
can receive notifications

System prevents race conditions from occurring here

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS L5.35

35

If a thread receives a notification, is it guaranteed

that condition is set?¢
o

1 No

01 Prior to calling wait (), test condition while holding lock

71 Upon returning from wait () retest condition to see if you should
walit () again

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.36

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.18

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

What if notify () is called and no thread is
waiting?
Wait-and-notify mechanism has no knowledge about the condition

about which it notifies

If notify () is called when no other thread is waiting?

The notification is lost

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS L5.37

37

What happens when more than 1 thread is waiting
for a notification?

Language specification does not define which thread gets the
notification

Based on JVM implementation, scheduling and timing issues

No way to determine which thread will get the notification

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS L5.38

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.19

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

notifyall ()

All threads that are waiting on an object are notified

When threads receive this, they must work out
(1) Which thread should continue

(2) Which thread(s) should call wait () again

All threads wake up, but they still have to reacquire the object lock

Must wait for the lock to be freed

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREADS

L5.39

39

The contents of this slide-set are based on the
following references

00782-5/978-0-596-00782-9. [Chapters 3, 4]

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREADS

Java Threads. Scott Oaks and Henry Wong. . 3rd Edition. O’Reilly Press. ISBN: 0-596-

L5.40

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L5.20

