
SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.1

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CSX55: DISTRIBUTED SYSTEMS [THREADS]

Shrideep Pallickara
Computer Science

Colorado State University

The Tangible Lock
Have you a synchronized method?
 The acquisition’s implicit
 With the lock hiding in plain slight

Care for the lock to be tactile?
 Use the Lock instead
 But with responsibilities galore

A recourse when drowning in bugs?
Tread carefully with how you lock() and unlock()

 and … reckon with them exceptions

1

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.2

Frequently asked questions from the previous class
survey
¨ Does InterruptedException help with memory visibility like
volatile?

¨ Are referenced objects flushed before lock acquisition?
¨ If the isInterrupted() passes the check just before the first statement of

the loop, it completes the body?
¨ How many threads can acquire the static synchronized class lock?
¨ If you have ZERO blocking calls (with prolonged waiting durations) do

you need to interrupt?
¨ Does the interrupt “detect” blocking calls?

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.2

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.3

Topics covered in this lecture

¨ Locks

¨ Notifications
¨ Wait-notify

3

COMPUTER SCIENCE DEPARTMENT

SYNCHRONIZED METHODS & LOCKS

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.3

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.5

Synchronizing methods

¨ Not possible to execute the same method in one thread while …
¤ Method is running in another thread

¨ If two different synchronized methods in an object are called?
¤ They both require the lock of the same object

¨ Two or more synchronized methods of the same object can never run in
parallel in separate threads

5

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.6

A lock is based on a specific instance of an object

¨ Not on a particular method or class

¨ Suppose we have 2 objects: objectA and objectB with
synchronized methods modifyData() and utilizeData()

¨ One thread can execute objectA.modifyData() while another
executes objectB.utilizeData() in parallel
¤ Two different locks are grabbed by two different threads
¤ No need for threads to wait for each other

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.4

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.7

How does a synchronized method behave in
conjunction with an unsynchronized one?

¨ Synchronized methods try to grab the object lock
¤ Only 1 synchronized method in an object can run at a time … provides data

protection

¨ Unsynchronized methods
¤ Don’t grab the object lock
¤ Can execute at any time … by any thread

n Regardless of whether a synchronized method is running

7

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.8

For a given object, at any time …

¨ Any number of unsynchronized methods may be executing

¨ But only 1 synchronized method can execute

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.5

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.9

Synchronizing static methods

¨ A lock can be obtained for each class
¤ The class lock

¨ The class lock is the object lock of the Class object that models the
class
¤ There is only 1 Class object per class
¤ Allows us to achieve synchronization for static methods

9

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.10

Object locks and class locks

¨ Are not operationally related

¨ The class lock can be grabbed and released independently of the
object lock

¨ If a non-static synchronized method calls a static synchronized method?
¤ It acquires both locks

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.6

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

EXPLICIT LOCKING

Empty stares, from each corner of a shared prison cell
One just escapes, one’s left inside the well
And he who forgets, will be destined to remember

Nothingman, Eddie Vedder & Jeffrey Ament, Pearl Jam

11

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.12

The synchronized keyword

¨ Serializes accesses to synchronized methods in an object

¨ Not suitable for controlling lock scope in certain situations

¨ Can be too primitive in some cases

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.7

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.13

Many synchronization schemes in J2SE 5.0 onwards
implement the Lock interface

¨ Two important methods
¤ lock() and unlock()

¨ Similar to using the synchronized keyword
¤ Call lock() at the start of the method
¤ Call unlock() at the end of the method

¨ Difference: we have an actual object that represents the lock
¤ Store, pass around, or discard

13

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.14

Semantics of the using Lock

¨ If another thread owns the lock
¤ Thread that attempts to acquire the lock must wait until the other thread calls
unlock()

¨ Once the waiting thread acquires the lock, it returns from the lock()
method

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.8

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.15

Using the Lock interface
public class DataOpertor {
 private Lock dataLock = new ReentrantLock();
 public void
 modifyData(byte[] newValues, int newPosition) {
 try {
 dataLock.lock();
 ... Modify values and position
 } finally {
 dataLock.unlock();
 }
 }

 public void utilizeDataAndPerformFunction() {
 try {
 dataLock.lock();
 ... Use values and position
 } finally {
 dataLock.unlock();
 }
}

15

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.16

Advantages of using the Lock interface

¨ Grab and release locks whenever we want

¨ Now possible for two objects to share the same lock
¤ Lock is no longer attached to the object whose method is being called

¨ Can be attached to data, groups of data, etc.
¤ Not objects containing the executing methods

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.9

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.17

Advantages of explicit locking

¨ We can move them anywhere to adjust lock scope
¤ Can span from a line of code to a scope that encompasses multiple methods

and objects

¨ Lock at scope specific to problem
¤ Not just the object

17

COMPUTER SCIENCE DEPARTMENT

SYNCHRONIZED BLOCKS

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.10

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.19

Much of what we accomplish with the Lock we can do so with the
synchronized keyword

public class DataOperator {

 public void
 modifyData(byte[] newValues, int newPosition) {
 synchronized(this) {
 ... Modify values and position
 }
 }

 public void utilizeDataAndPerformFunction() {
 synchronized(this) {
 ... Use values and position
 }
 }
}

19

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.20

Synchronized methods vs. Synchronized Blocks

¨ Possible to use only the synchronized block mechanism to synchronize
whole method

¨ You decide when it’s best to synchronize a block of code or the whole
method

¨ RULE: Establish as small a lock scope as possible

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.11

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.21

The Lock interface [java.util.concurrent.locks]

public interface Lock {

 public void lock();

 public void lockInterruptibly()
 throws InterruptedException;

 public boolean tryLock();
 public boolean tryLock(long time, TimeUnit unit)
 throws InterruptedException;

 public void unlock();

 public Condition newCondition();

21

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.22

Lock Fairness

¨ ReentrantLock allows locks to be granted fairly
¤ Locks are granted as close to arrival order as possible
¤ Prevents lock starvation from happening

¨ Possibilities for granting locks
① First-come-first-served
② Allows servicing the maximum number of requests
③ Do what’s best for the platform

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.12

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

THREAD NOTIFICATIONS

23

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.24

Objects and communications

¨ Every object has a lock

¨ Every object also includes mechanisms that allow it to be a waiting
area
¤ Allows communication between threads

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.13

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.25

Conditions

¨ One thread needs a condition to exist
¤ Assumes another thread will create that condition

¨ When another thread creates the condition?
¤ It notifies the first thread that has been waiting for that condition

25

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.26

wait(), notify() and the Object class

public class Object {

 public void wait();

 public void wait(long timeout);

 public void notify();
}

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.14

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.27

wait(), notify() and the Object class

¨ Wait-and-notify mechanisms are available for every object
¤ Accomplished by method invocations

¨ Synchronized mechanism is handled by using a keyword

27

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.28

Wait-and-notify relate to synchronization, but …

¨ It is more of a communications mechanism

¨ Allows one thread to communicate to another that a condition has
occurred
¤ Does not specify what that specific condition is

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.15

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.29

Can wait-and-notify replace the synchronized
mechanism?

¨ No

¨ Does not solve the race condition that the synchronized mechanism
solves

¨ Must be used in conjunction with the synchronized lock
¤ Prevents race condition that exists in the wait-notify mechanism itself

29

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.30

A code snippet that uses wait-notify to control the
execution of the thread

public class Tester implements Runnable {

 private boolean done = true;

 public synchronized run() {
 while (true) {
 if (done) wait();
 else { ... Logic ... wait(100);}

 }
 }

 public synchronized void setDone(boolean b) {
 done = b;
 if (!done) notify();
 }
}

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.16

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.31

About the wait() method

¨ When wait() executes, the synchronization lock is released
¤ By the JVM

¨ When a notification is received?
¤ The thread needs to reacquire the synchronization lock before returning from
wait()

31

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.32

Integration of wait-notify and synchronization

¨ Tightly integrated with the synchronization lock
¤ Feature not directly available to us
¤ Not possible to implement this: native method

¨ This is typical of approach in other libraries
¤ Condition variables for Solaris and POSIX threads require that a mutex lock

be held

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.17

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.33

Details of the race condition in the wait-notify
mechanism

¨ The first thread tests the condition and confirms that it must wait

¨ The second thread sets the condition

¨ The second thread calls notify()
¤ This goes unheard because the first thread is not yet waiting

¨ The first thread calls wait()

33

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.34

How does the potential race condition get resolved?

¨ To call wait() or notify()
¤ Obtain lock for the object on which this is being invoked

¨ It seems as if the lock has been held for the entire wait() invocation,
but …
① wait() releases lock prior to waiting
② Reacquires the lock just before returning from wait()

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.18

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.35

Is there a race condition during the time wait()
releases and reacquires the lock?

¨ wait() is tightly integrated with the lock mechanism

¨ Object lock is not freed until the waiting thread is in a state in which it
can receive notifications
¤ System prevents race conditions from occurring here

35

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.36

If a thread receives a notification, is it guaranteed
that condition is set?

¨ No

¨ Prior to calling wait(), test condition while holding lock

¨ Upon returning from wait() retest condition to see if you should
wait() again

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.19

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.37

What if notify() is called and no thread is
waiting?

¨ Wait-and-notify mechanism has no knowledge about the condition
about which it notifies

¨ If notify() is called when no other thread is waiting?
¤ The notification is lost

37

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.38

What happens when more than 1 thread is waiting
for a notification?

¨ Language specification does not define which thread gets the
notification
¤ Based on JVM implementation, scheduling and timing issues

¨ No way to determine which thread will get the notification

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L5.20

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.39

notifyAll()

¨ All threads that are waiting on an object are notified

¨ When threads receive this, they must work out
① Which thread should continue

② Which thread(s) should call wait() again
n All threads wake up, but they still have to reacquire the object lock

n Must wait for the lock to be freed

39

THREADSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L5.40

The contents of this slide-set are based on the
following references
¨ Java Threads. Scott Oaks and Henry Wong. . 3rd Edition. O’Reilly Press. ISBN: 0-596-

00782-5/978-0-596-00782-9. [Chapters 3, 4]

40

