
SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.1

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CSX55: DISTRIBUTED SYSTEMS [THREADS & SAFETY]

Shrideep Pallickara
Computer Science

Colorado State University

Threads have you in a bind?
With Objects and Concurrency at play
 Are nerves about to fray?

Here’s something to have those worries abate
 It’s just about access to shared, mutable state

1

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.2

Frequently asked questions from the previous class
survey

¨ When to use synchronized (implicit) vs explicit locks?

¨ When to use tryLock() over lock()?
¨ Condition on the Lock interface?

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.2

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.3

Topics covered in this lecture

¨ wait-notify

¨ Thread safety

3

COMPUTER SCIENCE DEPARTMENT

THREAD NOTIFICATIONS

Tell me how you’ve been,
Tell what you’ve seen,
Tell me that you’d like to see me too.

‘cause my heart is full of no blood,
My cup is full of no love,
Couldn't take another sip even if I wanted.

Not Too Late, Norah Jones.

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.3

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.5

Objects and communications

¨ Every object has a lock

¨ Every object also includes mechanisms that allow it to be a waiting
area
¤ Allows communication between threads

5

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.6

Conditions

¨ One thread needs a condition to exist
¤ Assumes another thread will create that condition

¨ When another thread creates the condition?
¤ It notifies the first thread that has been waiting for that condition

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.4

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.7

wait(), notify() and the Object class

public class Object {

 public void wait();

 public void wait(long timeout);

 public void notify();
}

7

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.8

wait(), notify() and the Object class

¨ Wait-and-notify mechanisms are available for every object
¤ Accomplished by method invocations

¨ Synchronized mechanism is handled by using a keyword

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.5

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.9

Wait-and-notify relate to synchronization, but …

¨ It is more of a communications mechanism

¨ Allows one thread to communicate to another that a condition has
occurred
¤ Does not specify what that specific condition is

9

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.10

Can wait-and-notify replace the synchronized
mechanism?

¨ No

¨ Does not solve the race condition that the synchronized mechanism
solves

¨ Must be used in conjunction with the synchronized lock
¤ Prevents race condition that exists in the wait-notify mechanism itself

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.6

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.11

A code snippet that uses wait-notify to control the
execution of the thread

public class Tester implements Runnable {

 private boolean done = true;

 public synchronized run() {
 while (true) {
 if (done) wait();
 else { ... Logic ... wait(100);}

 }
 }

 public synchronized void setDone(boolean b) {
 done = b;
 if (!done) notify();
 }
}

11

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.12

About the wait() method

¨ When wait() executes, the synchronization lock is released
¤ By the JVM

¨ When a notification is received?
¤ The thread needs to reacquire the synchronization lock before returning from
wait()

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.7

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.13

Integration of wait-notify and synchronization

¨ Tightly integrated with the synchronization lock
¤ Feature not directly available to us
¤ Not possible to implement this: native method

¨ This is typical of approach in other libraries
¤ Condition variables for Solaris and POSIX threads require that a mutex lock

be held

13

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.14

Details of the race condition in the wait-notify
mechanism

¨ The first thread tests the condition and confirms that it must wait

¨ The second thread sets the condition

¨ The second thread calls notify()
¤ This goes unheard because the first thread is not yet waiting

¨ The first thread calls wait()

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.8

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.15

How does the potential race condition get resolved?

¨ To call wait() or notify()
¤ Obtain lock for the object on which this is being invoked

¨ It seems as if the lock has been held for the entire wait() invocation,
but …
① wait() releases lock prior to waiting
② Reacquires the lock just before returning from wait()

15

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.16

Is there a race condition during the time wait()
releases and reacquires the lock?

¨ wait() is tightly integrated with the lock mechanism

¨ Object lock is not freed until the waiting thread is in a state in which it
can receive notifications
¤ System prevents race conditions from occurring here

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.9

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.17

If a thread receives a notification, is it guaranteed
that condition is set?

¨ No

¨ Prior to calling wait(), test condition while holding lock

¨ Upon returning from wait() retest condition to see if you should
wait() again

17

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.18

What if notify() is called and no thread is
waiting?

¨ Wait-and-notify mechanism has no knowledge about the condition
about which it notifies

¨ If notify() is called when no other thread is waiting?
¤ The notification is lost

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.10

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.19

What happens when more than 1 thread is waiting
for a notification?

¨ Language specification does not define which thread gets the
notification
¤ Based on JVM implementation, scheduling and timing issues

¨ No way to determine which thread will get the notification

19

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.20

notifyAll()

¨ All threads that are waiting on an object are notified

¨ When threads receive this, they must work out
① Which thread should continue

② Which thread(s) should call wait() again
n All threads wake up, but they still have to reacquire the object lock

n Must wait for the lock to be freed

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.11

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.21

Threads and locks: Summary

¨ Locks are held by threads
¤ A thread can hold multiple locks

n Any thread that tries to obtains these locks? Placed into a wait state

n If the thread deadlocks? It results in all locks that it holds becoming unavailable to
other threads

¨ If a lock is held by some other thread?
¤ The thread must wait for it to be free: There is no preemption of locks!
¤ If the lock is unavailable (or held by a deadlocked thread) it blocks all the

waiting threads

21

COMPUTER SCIENCE DEPARTMENTTHREAD SAFETY
22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.12

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.23

Race conditions

¨ Getting the right answer depends on lucky timing
¤ E.g., check-then-act: When stale observations are used to make a decision

on what to do next

¨ Real world example
¤ Our previous example of 2 friends trying to meet up for coffee on campus

without specifying which of the 2 locations

23

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.24

Racing and synchronization [1/3]

¨ Purpose of synchronization?
¤ Prevent race conditions that can cause data to be found in either an

inconsistent or intermediate state

¨ Threads are not allowed to race during sections of code protected by
synchronization
¤ But this does not mean outcome or order of execution of threads is

deterministic
n Threads may be racing prior to the synchronized section of code

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.13

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.25

Racing and synchronization [2/3]

¨ If threads are waiting on the same lock
¤ The order in which the synchronized code is executed is determined by

order in which lock is granted
n Which is platform-specific and non-deterministic

25

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.26

Racing and synchronization [3/3]

¨ Not all races should be avoided
¤ This is a subtle but important point: If you do this … everything is serialized!

¤ Only race-conditions within thread-unsafe sections of the code are
considered a problem
① Synchronize code that prevents race condition
② Design code that is thread-safe without the need for synchronization (or requires

minimal synchronization)

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.14

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CONCURRENT PROGRAMMING

27

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.28

Concurrent programming

¨ Concurrent programs require the correct use of threads and locks

¨ But these are just mechanisms

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.15

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.29

Object State

¨ Includes its data
¤ Stored in instance variables or static fields
¤ Fields from dependent objects

n HashMap’s state also depends on Map.Entry<K, V> objects

¨ Encompasses any data that can affect its externally visible behavior

29

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.30

The crux of developing thread safe programs

¨ Managing access to state
¤ In particular shared, mutable state

¨ Shared
¤ Variables could be accessed by multiple threads

¨ Mutable
¤ Variable’s values change over its lifetime

¨ Thread-safety
¤ Protecting data from uncontrolled concurrent access

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.16

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.31

When to coordinate accesses

¨ Whenever more than one thread accesses a state variable, and one of
them might write to it?
¤ They must all coordinate their access to it

¨ Avoid temptation to think that there are special situations when you
can disregard this

31

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.32

When should an object be thread-safe?

¨ Will it be accessed from multiple threads?

¨ The key here is how the object is used
¤ Not what it does

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.17

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.33

How to make an object thread-safe

¨ Use synchronization to coordinate access to mutable state

¨ Failure to do this?
¤ Data corruptions
¤ Problems that manifest themselves in myriad forms

33

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.34

Mechanisms for synchronization in Java

¨ One way to achieve this is via the synchronized keyword
¤ Exclusive locking

¨ Other approaches include:
¤ volatile variables
¤ Explicit locks
¤ Atomic variables

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.18

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.35

Programs that omit synchronizations

¨ Might work for some time
¤ But it will break at some point

¨ Far easier to design a class to be thread-safe from the start
¤ Retrofitting it to be thread-safe is extremely hard

35

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.36

Thread-safety: Encapsulate your state

¨ Fewer code should have access to a particular variable
¤ Easier to reason about conditions under which it might be accessed

¨ DON’T:
¤ Store state in public fields
¤ Publish reference to an internal object

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.19

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.37

Fixing access to mutable state variables from
multiple threads

¨ Don’t share state variables across threads

¨ Make state variables immutable

¨ Use synchronization to coordinate access to the state variable

37

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.38

Correctness of classes

¨ Class conforms to specification

¨ Invariants constrain object’s state

¨ Post conditions describe the effects of operations

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.20

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.39

A Thread-safe class

¨ Behaves correctly when accessed from multiple threads

¨ Regardless of scheduling or interleaving of execution of those threads
¤ By the runtime environment

¨ No additional synchronization or coordination by the calling code

39

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.40

Really?

¨ Thread safe classes encapsulate any needed synchronization

¨ Clients should not have to provide their own

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.21

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.41

Stateless objects are always thread-safe

public class StatelessClass implements Servlet {

 public void factorizer(ServletRequest req,
 ServletResponse resp) {
 BigInteger i = extractFromReq(req);
 BigInteger[] factors = factorize(i);
 encodeIntoResponse(resp, factors);
 }

}

41

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.42

Stateless objects are always thread-safe

¨ Transient state for a particular computation exists solely in local
variables
¤ Stored on the thread’s stack
¤ Accessible only to the executing thread

¨ One thread cannot influence the result of another
¤ The threads have no shared state

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.22

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.43

Atomicity

¨ Let’s look at two operations A and B

¨ From the perspective of thread executing A

¨ When another thread executes B
¤ Either all of B has executed or none of it has

¨ Operations A and B are atomic with respect to each other

43

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.44

Initializing Objects

public class LazyInitialization {

 private ExpensiveObject instance = null;

 public ExpensiveObject getInstance() {
 if (instance == null) {
 instance = new ExpensiveObject();
 }
 return instance;
 }

}

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.23

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.45

Thread-safe initialization

public class Singleton {
 private static final Singleton instance = new Singleton();

 // Private constructor prevents instantiation from other
 // classes
 private Singleton() { }

 public static Singleton getInstance() {
 return instance;
 }
}

45

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.46

The final keyword

¨ You cannot extend a final class
¤ E.g., java.lang.String

¨ You cannot override a final method

¨ You can only initialize a final variable once
¤ Either via an initializer or an assignment statement

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.24

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.47

Blank final instance variable of a class

¨ Must be assigned within every constructor of the class

¨ Attempting to set it outside the constructor will result in a compilation
error

¨ The value of a final variable is not necessarily known at compile
time

47

THREADS & THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L6.48

The contents of this slide-set are based on the
following references
¨ Java Threads. Scott Oaks and Henry Wong. . 3rd Edition. O’Reilly Press. ISBN: 0-596-

00782-5/978-0-596-00782-9. [Chapters 3, 4]

¨ Java Concurrency in Practice. Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer,
David Holmes, and Doug Lea. Addison-Wesley Professional. ISBN: 0321349601/978-
0321349606. [Chapters 1, 2, 3 and 4]

48

