CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

CSx55: DISTRIBUTED SYSTEMS [THREAD SAFETY]

Putting the brakes, on impending code breaks

Let a reference escape, have you?
Misbehave, your code will, out of the blue

Get out, you will, of this bind
If, your objects, you have confined

Shrideep Pallickara

Computer Science
Colorado State University

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY
1
Frequently asked questions from the previous class
survey
[
[Stateless? Final?
Why? How does this help
01 Is it not possible to observe a standard data structure in an inconsistent
state?
COLORADO STATE UNIVERSITY (oo o e arvenT THREAD SAFETY L7.2
2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.1

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

1 Atomicity

Topics covered in this lecture

1 Locks& Reentrancy
1 Guarding state with locks
01 Sharing Objects

1 Thread confinement

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY CompuTeER SCIENCE DEPARTMENT THREAD SAFETY L7.3
3
A L] [] [] h L[]
tomicity with compound operations
[
public class CountingFactorizer {
private long count = 0;
public long getCount () {return count;}
public void factorizer (int i) {
int[] factors = factor(i);
count++;
} A
Professor: SHRIDEEP PALLICKARA L7.4

COLORADO STATE UNIVERSITY CoupUTeR SCIENGE DEPARTMENT THREAD SAFETY

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L6.2

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Atomicity with compound operations

public class CountingFactorizer ({
private final AtomicLong count = new AtomicLong(0) ;

public long getCount () {return count;}

public void factorizer (int i) {
int[] factors = factor(i);
count.incrementAndGet () ;

} -
o

)

|

} =/

5
Compound actions & thread-safety
Compound actions
Check-then-act
Read-modify-write
Must be executed atomically for thread-safety
L7.6

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L6.3

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

S
F -
//,

LOCKS & REENTRANCY

7
Reentrancy
When thread requests lock held by another thread?
Requesting thread blocks
If a thread attempts to acquire a lock it already holds?
Succeeds
Locks are acquired on a per-thread rather than on a per-invocation
basis
COLORADO STATE UNIVERSITY (oo o e arvenT THREAD SAFETY L7.8
8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.4

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

How reentrancy works

For each lock two items are maintained
Acquisition count

Owning thread

When the count is zero?

Lock is free

If a thread acquires lock for the first time?

Count is one

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY

[1/2]

L7.9

9

How reentrancy works

If owning thread acquires lock again, count is incremented

[2/2]

When owning thread exits synchronized block, count is decremented

If it is zero Lock is released

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY

L7.10

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L6.5

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Does this result in a deadlock?

public class Widget {
public synchronized doSomething() {

}

}

public class LoggingWidget extends Widget {
public synchronized void doSomething() {

System.out.println (toString()+“Calling doSomething()) ;
super .doSomething () ;

pay,
} ~W -
} (NN A7)
No! Intrinsic locks are reentrant J

11

GUARDING STATE WITH LOCKS

COMPUTER SCIENCE DEPARTMENT

@ COLORADO STATE UNIVERSITY

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.6

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Guarding state with locks

A mutable, shared variable that may be accessed by multiple threads
must be guarded by the same lock

For every invariant that involves more than one variable?

All variables must be guarded by the same lock

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY L7.13

13

Watch for indiscriminate use of synchronization

Every method in Vector is synchronized

But this does not render compound actions on Vector atomic

if (!vector.contains (element)) ({
vector.add (element) ;

}

* Snippet has race condition even though add and contains are
atomic

* Additional locking needed for compound actions

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.14

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L6.7

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Pitfalls of over synchronization

Number of simultaneous invocations?

Poor concurrency

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY

Not limited by processor resources, but is limited by the application structure

L7.15

15

Antidote for poor concurrency

Control the scope of the lock
Too large: Invocations become sequential

Don’t make it too small either

Operations that are atomic should not be in synchronized block

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY

L7.16

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L6.8

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

SHARING OBJECTS

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

17

What we will be looking at

Techniques for sharing and publishing objects

Safe access from multiple threads

Together with synchronization, sharing objects lays foundation for
thread-safe classes

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY

L7.18

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L6.9

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Synchronization

What we have seen so far:

Atomicity and demarcating critical sections

But it is also about memory visibility
We prevent one thread from modifying object state while another is using it

When state of an object is modified, other thread can see the changes that
were made

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY L7.19

19

Publication and Escape

Publishing an object

Makes it available outside current scope

Storing a reference to it, returning from a non-private method, passing it as an
argument to another method

Escape

An object that is published when it should not have been

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.20

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L6.10

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Pitfalls in publication

Publishing internal state variables

Makes it difficult to preserve invariants

Publishing objects before they are constructed

Compromises thread-safety

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY

L7.21

21

Most blatant form of publication

Storing a reference in a public static field

public static Set<Secrets> knownSecrets;

public void initialize () {

knownSecrets = new HashSet<Secret> () f E
) 9%

If you add a Secret to knownSecrets?

You also end up publishing that Secret

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY

L7.22

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L6.11

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Allowing internal mutable state to escape

public class PublishingState {
private String[] states = new String[] {
\\AKII , \\ALII , "

b

public String[] getStates() {return states;}

* states has escaped its intended scope
®* What should have been private is now public

* Any caller can modify its contents

23
Another way to publish internal state
public class ThisEscape { _é E
public ThisEscape (EventSource source) { sl‘@
source.registerListener (
new EventListener () {
public void onEvent (Event e) {
doSomething (e) ;
}
1)
}
}
* When EventListener is published, it publishes the
enclosing ThisEscape instance
* Inner class instances contain hidden reference to
enclosing instance
COLORADO STATE UNIVERSITY (oo o e arvenT THREAD SAFETY L7.24

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.12

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Abbreviated view of the classes generated by the
javac

public class ThisEscape { class ThisEscape$l implements EventlListener {

final ThisEscape this$0;
public ThisEscape(EventSource source) {

source.registerListener(new ThisEscape$l(this)); ThisEscape$l(ThisEscape thisescape) {

} this$0 = thisescape; super(); }

private void doSomething(Event e) { public void onEvent(Event e) {

ThisEscape.access$000(this$0, e); }
} }

static void access$000(ThisEscape _this, Event event) {
_this.doSomething(event) ;
}

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY L7.25

25

Safe construction practices
|

71 An object is in a predictable, consistent state only after its constructor
returns

1 Publishing an object within its constructor?
You are publishing an incompletely constructed object

Even if you are doing so in the last line of the constructor

1 RULE: Don’t allow this to escape during construction

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.26

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.13

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

A common mistake is to start a thread from a

constructor
[

0 When an object creates a thread in its constructor
Almost always shares its this reference with the new thread

m Explicitly: Passing it to the constructor

B Implicitly: The Thread or Runnable is an inner class of the owning object

1 Nothing wrong with creating a thread in a constructor
Just don'’t start the Thread

Expose an initialize () method

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY L7.27

27

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.14

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Thread confinement

Accessing shared, mutable data requires synchronization

Avoid this by not sharing

If data is only accessed from a single thread?

No synchronization is needed

When an object is confined to a thread?

Usage is thread-safe even if the object is not

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY L7.29

29

Thread confinement

Language has no means of confining an object to a thread

Thread confinement is an element of a program’s design

Enforced by implementation

Language and core libraries provide mechanisms to help with this

Local variables and the ThreadLocal class

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.30

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L6.15

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Stack confinement

Obiject can only be reached through local variables

Local variables are intrinsically confined to the executing thread
Exist on executing thread’s stack

Not accessible to other threads

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY L7.31

31

Thread confinement of reference variables

public int loadTheArk() {
SortedSet<Animal> animals;

// animals confined to method don’t let
// them escape

return numPairs;

If you were to publish a reference to animals,
stack confinement would be violated

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.32

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.16

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

ThreadLocal

Allows you to associate a per-thread value with a value-holding object
Provides set and get accessor methods
Maintains a separate copy of value for each thread that uses it

get returns the most recent value passed to set

From the currently executing thread

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CompuTER SCIENCE DEPARTMENT

33

THREAD SAFETY L7.33

Using ThreadLocal for thread confinement

private static ThreadLocal<Connection> connectionHolder
= new ThreadLocal<Connection> () {

public Connection initialValue() {
return DriverManager.getConnection (DB URL) ;

}
}i

public static Connection getConnection ()
return connectionHolder.get () ;
}

{

Each thread will have its own connection

When thread calls ThreadLocal.get for the first time?
initialValue() provides the initial value

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

34

THREAD SAFETY L7.34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.17

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Common use of ThreadLocal

Used when a frequently used operation requires a temporary object

Wish to avoid reallocating temporary object on each invocation

Integer.toString()

Before 5.0 used ThreadLocal to store a 12-byte buffer for formatting
result

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY L7.35

35

Things are falling down on me
Heavy things | could not see
When | finally came around
Something small would pin me down
When | tried to step aside
| moved to where they hoped I'd be
Heavy Things, Scott Herman;Tom Marshall;Trey Anastasio. Phish

—— IMMUTABLE OBJECTS

e 3 s M

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.18

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Immutable objects

State cannot be modified after construction

All its fields are final

Properly constructed

The this reference does not escape during construction

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY L7.37

37

Immutable objects

public final class ThreeStooges {
private final Set<String> stooges = new HashSet<String>();

public ThreeStooges () {
stooges.add (“Moe”) ;
stooges.add (“Larry”) ;
stooges.add (“Curly”) ;
}

public boolean isStooge (String name) {
return stooges.contains (name) ;

}

Design makes it impossible o modify after construction

The stooges reference is final
All object state reached through a final field

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.38

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.19

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Safe publication of objects

publish that object safely

Storing reference to an object into a public field is not enough to

AT
public Holder holder; '\91 &/.

public void initialize() {
holder = new Holder (42);
}

Holder could appear to be in an inconsistent state

Even though invariants may have been established by constructor

Professor: SHRIDEEP PALLICKARA

COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY L7.39

39

public class Holder {
private int n;

public Holder (int n) {this.n = n}

public void assertSanity () {
if (n '= n) {

}

Class at risk of failure if not published properly

Al

throw new AssertionError (“Statement is false”);

an up-to-date value the next time

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

Thread may see a stale value first time it reads the field and

THREAD SAFETY

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L6.20

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Pearls and swine bereft of me

Long and weary my road has been

| was lost in the cities

Alone in the hills

No sorrow or pity for leaving, ffeel, yeah

| am not your rolling wheels
| am the highway
| am not your carpet ride
| @m the sky
| Am the Highway, Audioslave .

COMPOSING OBJECTS

—
s

41

Composing Objects

We don’t want to have to analyze each memory access to ensure
program is thread-safe

We wish to take thread-safe components and compose them into
larger components or programs

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L6.21

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Identify variables that form the object’s state

Identify invariants that constrain the state variables

Basic elements of designing a thread-safe class

Establish a policy for managing concurrent access to the object’s state

43
Synchronization policy

Defines how object coordinates access to its state
Without violating its invariants or post-conditions

Specifies a combination of:
Immutability

. To maintain
Thread confinement Thread Safety
Locking
L7.44

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L6.22

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Looking at a counter

public final class Counter {
private long value=0;

public synchronized long getValue() {
return value;

}

public synchronized long increment () {
if (value == Long.MAX VALUE) ({

}
value++;
return value;

}

throw new IllegalStateException (“Counter Overflow”) ;

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY

A 2
7

)

=)

L7.45

45

Making a class thread-safe

We need to reason about state

Object and variables have state space
Range of possible states

Keep this small so that it is easier to reason about

Ensure that invariants hold under concurrent access

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY

L7.46

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L6.23

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY

Classes have invariants that tag certain states as
valid or invalid

Looking back at our Counter example

The value field is a long

The state space ranges from Long.MIN VALUE to Long.MAX VALUE

The class places constraints on value

Negative values are not allowed

Professor: SHRIDEEP PALLICKARA L7.47

47

Operations may have post conditions that tag state
transitions as invalid

Looking back at our Counter example

If the current state of Counteris 17
The only valid next state is 18
When the next state is derived from the current state?

Compound action

Not all operations impose state transition constraints
For e.g., if a variable tracks current temperature? Previous state doesn’t

impact current state

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.48

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L6.24

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Constraints and synchronization requirements

o1 If certain states are invalid?

Underlying state variables should be encapsulated

® If not, client code can put it in an inconsistent state

01 If an operation has invalid state transitions?

It must be made atomic

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY L7.49

49

| public class NumberRange {

Looking at a case where invariants constrain multiple
state_variables

private final AtomicInteger lower = new AtomicInteger (0);
private final AtomicInteger upper = new AtomicInteger (0);

public void setLower (int i) {
if (1 > upper.get())

throw IllegalArgumentException (“lower > upper!”);
lower.set (1) ;

}

public void setUpper (int i) {
if (1 < lower.get())
throw IllegalArgumentException (“upper < lower!”);
upper.set (i) ;

}

/\
public boolean isInRange (int 1i) { '@l &7
return (i >= lower.get () && 1 <= upper.get()):; s.@

}
}

COLORADO STATE UNIVERSITY Compuren SOIENGE DEPARTMENT THREAD SAFETY L7.50

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L6.25

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Problems with NumberRange

Does not preserve invariant that constrains 1lower and upper

The methods setLower and setUpper attempt this preservation

But they do so poorly!
They are check-then-act sequences that use insufficient locking that precludes
atomicity

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY L7.51

51

Problems with NumberRange

If the number range (0, 10) holds
One thread calls setLower (5) while another calls setUpper (4)

With unlucky timing?
Both calls will pass checks in the setters

Both modifications will be applied
Range isnow (5, 4) ... aninvalid state

AtomicInteger is thread-safe, the composite class is not

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.52

52

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.26

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Multivariable invariants

Related variables must be fetched or updated in an atomic operation

Don't:
Update one
Release and reacquire lock, and ...

Then update others

The lock that guards the variables

Must be held for the duration of any operation that accesses them

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY L7.53

53

State-dependent operations

Objects may have state-based pre-conditions

E.g., cannot remove item from an empty queue

In a single-threaded program

Operations simply fail

In a concurrent program

Precondition may be true later because of the actions of another thread

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.54

54

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L6.27

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

State dependent operations:
Mechanisms
wait () /notify ()
Supported by the JVM and closely tied with intrinsic locking

Other possibilities

Use classes such as blocking queues or semaphores

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY L7.55

55

The contents of this slide-set are based on the
following references

Java Concurrency in Practice. Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer,
David Holmes, and Doug Lea. Addison-Wesley Professional. ISBN: 0321349601 /97 8-
0321349606. [Chapters 1, 2, 3 and 4]

https:/ /www.javaspecialists.eu /archive /Issue 192b.html

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L7.56

56

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L6.28

