
SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.1

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CSX55: DISTRIBUTED SYSTEMS [THREAD SAFETY]

Shrideep Pallickara
Computer Science

Colorado State University

Putting the brakes, on impending code breaks
Let a reference escape, have you?
 Misbehave, your code will, out of the blue

Get out, you will, of this bind
 If, your objects, you have confined

1

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.2

Frequently asked questions from the previous class
survey

¨ Stateless? Final?
¤ Why? How does this help

¨ Is it not possible to observe a standard data structure in an inconsistent
state?

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.2

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.3

Topics covered in this lecture

¨ Atomicity

¨ Locks& Reentrancy
¨ Guarding state with locks

¨ Sharing Objects
¨ Thread confinement

3

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.4

Atomicity with compound operations

public class CountingFactorizer {
 private long count = 0;

 public long getCount() {return count;}

 public void factorizer(int i) {
 int[] factors = factor(i);
 count++;
 }

}

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.3

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.5

Atomicity with compound operations

public class CountingFactorizer {
 private final AtomicLong count = new AtomicLong(0);

 public long getCount() {return count;}

 public void factorizer(int i) {
 int[] factors = factor(i);
 count.incrementAndGet();
 }

}

5

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.6

Compound actions & thread-safety

¨ Compound actions
§ Check-then-act
§ Read-modify-write

¨ Must be executed atomically for thread-safety

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.4

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

LOCKS & REENTRANCY

7

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.8

Reentrancy

¨ When thread requests lock held by another thread?
¤ Requesting thread blocks

¨ If a thread attempts to acquire a lock it already holds?
¤ Succeeds

¨ Locks are acquired on a per-thread rather than on a per-invocation
basis

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.5

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.9

How reentrancy works [1/2]

¨ For each lock two items are maintained
¤ Acquisition count
¤ Owning thread

¨ When the count is zero?
¤ Lock is free

¨ If a thread acquires lock for the first time?
¤ Count is one

9

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.10

How reentrancy works [2/2]

¨ If owning thread acquires lock again, count is incremented

¨ When owning thread exits synchronized block, count is decremented
¤ If it is zero …. Lock is released

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.6

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.11

Does this result in a deadlock?

public class Widget {
 public synchronized doSomething() {
 ...
 }

}

public class LoggingWidget extends Widget {

 public synchronized void doSomething() {
 System.out.println(toString()+“Calling doSomething());
 super.doSomething();
 }
}

No! Intrinsic locks are reentrant

11

COMPUTER SCIENCE DEPARTMENT

GUARDING STATE WITH LOCKS

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.7

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.13

Guarding state with locks

¨ A mutable, shared variable that may be accessed by multiple threads
must be guarded by the same lock

¨ For every invariant that involves more than one variable?
¤ All variables must be guarded by the same lock

13

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.14

Watch for indiscriminate use of synchronization

¨ Every method in Vector is synchronized

¨ But this does not render compound actions on Vector atomic

if (!vector.contains(element)) {
 vector.add(element);
}

• Snippet has race condition even though add and contains are
atomic

• Additional locking needed for compound actions

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.8

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.15

Pitfalls of over synchronization

¨ Number of simultaneous invocations?
¤ Not limited by processor resources, but is limited by the application structure
¤ Poor concurrency

15

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.16

Antidote for poor concurrency

¨ Control the scope of the lock
¤ Too large: Invocations become sequential
¤ Don’t make it too small either

n Operations that are atomic should not be in synchronized block

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.9

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

SHARING OBJECTS

17

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.18

What we will be looking at

¨ Techniques for sharing and publishing objects
¤ Safe access from multiple threads

¨ Together with synchronization, sharing objects lays foundation for
thread-safe classes

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.10

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.19

Synchronization

¨ What we have seen so far:
¤ Atomicity and demarcating critical sections

¨ But it is also about memory visibility
¤ We prevent one thread from modifying object state while another is using it
¤ When state of an object is modified, other thread can see the changes that

were made

19

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.20

Publication and Escape

¨ Publishing an object
¤ Makes it available outside current scope

n Storing a reference to it, returning from a non-private method, passing it as an
argument to another method

¨ Escape
¤ An object that is published when it should not have been

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.11

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.21

Pitfalls in publication

¨ Publishing internal state variables
¤ Makes it difficult to preserve invariants

¨ Publishing objects before they are constructed
¤ Compromises thread-safety

21

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.22

Most blatant form of publication

¨ Storing a reference in a public static field

public static Set<Secrets> knownSecrets;

public void initialize() {
 knownSecrets = new HashSet<Secret>();
}

§ If you add a Secret to knownSecrets?

§ You also end up publishing that Secret

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.12

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.23

Allowing internal mutable state to escape

public class PublishingState {
 private String[] states = new String[] {
 “AK”, “AL”, …
 };

 public String[] getStates() {return states;}
}

• states has escaped its intended scope
§ What should have been private is now public

• Any caller can modify its contents

23

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.24

Another way to publish internal state
public class ThisEscape {

 public ThisEscape(EventSource source) {
 source.registerListener(
 new EventListener() {
 public void onEvent(Event e) {
 doSomething(e);
 }
 });
 }
}

• When EventListener is published, it publishes the
enclosing ThisEscape instance

• Inner class instances contain hidden reference to
enclosing instance

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.13

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.25

Abbreviated view of the classes generated by the
javac

class ThisEscape$1 implements EventListener {
 final ThisEscape this$0;

 ThisEscape$1(ThisEscape thisescape) {
 this$0 = thisescape; super(); }

 public void onEvent(Event e) {
 ThisEscape.access$000(this$0, e); }
}

public class ThisEscape {

 public ThisEscape(EventSource source) {
 source.registerListener(new ThisEscape$1(this));
 }

 private void doSomething(Event e) {
 …..
 }

 static void access$000(ThisEscape _this, Event event) {
 _this.doSomething(event);
 }
 }

25

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.26

Safe construction practices

¨ An object is in a predictable, consistent state only after its constructor
returns

¨ Publishing an object within its constructor?
¤ You are publishing an incompletely constructed object
¤ Even if you are doing so in the last line of the constructor

¨ RULE: Don’t allow this to escape during construction

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.14

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.27

A common mistake is to start a thread from a
constructor

¨ When an object creates a thread in its constructor
¤ Almost always shares its this reference with the new thread

n Explicitly: Passing it to the constructor
n Implicitly: The Thread or Runnable is an inner class of the owning object

¨ Nothing wrong with creating a thread in a constructor
¤ Just don’t start the Thread
¤ Expose an initialize() method

27

COMPUTER SCIENCE DEPARTMENT

THREAD CONFINEMENT

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.15

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.29

Thread confinement

¨ Accessing shared, mutable data requires synchronization
¤ Avoid this by not sharing

¨ If data is only accessed from a single thread?
¤ No synchronization is needed

¨ When an object is confined to a thread?
¤ Usage is thread-safe even if the object is not

29

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.30

Thread confinement

¨ Language has no means of confining an object to a thread

¨ Thread confinement is an element of a program’s design
¤ Enforced by implementation

¨ Language and core libraries provide mechanisms to help with this
¤ Local variables and the ThreadLocal class

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.16

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.31

Stack confinement

¨ Object can only be reached through local variables

¨ Local variables are intrinsically confined to the executing thread
¤ Exist on executing thread’s stack
¤ Not accessible to other threads

31

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.32

Thread confinement of reference variables

public int loadTheArk() {
 SortedSet<Animal> animals;

 // animals confined to method don’t let
 // them escape

 return numPairs;
}

If you were to publish a reference to animals,
stack confinement would be violated

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.17

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.33

ThreadLocal

¨ Allows you to associate a per-thread value with a value-holding object

¨ Provides set and get accessor methods
¤ Maintains a separate copy of value for each thread that uses it
¤ get returns the most recent value passed to set

n From the currently executing thread

33

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.34

Using ThreadLocal for thread confinement
private static ThreadLocal<Connection> connectionHolder
 = new ThreadLocal<Connection>() {
 public Connection initialValue() {
 return DriverManager.getConnection(DB_URL);
 }
 };

public static Connection getConnection() {
 return connectionHolder.get();
}

Each thread will have its own connection

When thread calls ThreadLocal.get for the first time?
 initialValue() provides the initial value

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.18

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.35

Common use of ThreadLocal

¨ Used when a frequently used operation requires a temporary object
¤ Wish to avoid reallocating temporary object on each invocation

¨ Integer.toString()
¤ Before 5.0 used ThreadLocal to store a 12-byte buffer for formatting

result

35

COMPUTER SCIENCE DEPARTMENT

IMMUTABLE OBJECTS

Things are falling down on me
Heavy things I could not see
When I finally came around
Something small would pin me down
When I tried to step aside
I moved to where they hoped I'd be

Heavy Things, Scott Herman;Tom Marshall;Trey Anastasio. Phish

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.19

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.37

Immutable objects

¨ State cannot be modified after construction

¨ All its fields are final

¨ Properly constructed
¤ The this reference does not escape during construction

37

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.38

Immutable objects

public final class ThreeStooges {
 private final Set<String> stooges = new HashSet<String>();

 public ThreeStooges() {
 stooges.add(“Moe”);
 stooges.add(“Larry”);
 stooges.add(“Curly”);
 }

 public boolean isStooge(String name) {
 return stooges.contains(name);
 }
}

Design makes it impossible to modify after construction

The stooges reference is final
 All object state reached through a final field

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.20

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.39

Safe publication of objects

¨ Storing reference to an object into a public field is not enough to
publish that object safely

public Holder holder;

public void initialize() {
 holder = new Holder(42);
}

Holder could appear to be in an inconsistent state

 Even though invariants may have been established by constructor

39

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.40

Class at risk of failure if not published properly

public class Holder {
 private int n;

 public Holder(int n) {this.n = n}

 public void assertSanity() {
 if (n != n) {
 throw new AssertionError(“Statement is false”);
 }
 }
}

Thread may see a stale value first time it reads the field and
 an up-to-date value the next time

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.21

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

COMPOSING OBJECTS

Pearls and swine bereft of me
Long and weary my road has been
I was lost in the cities
Alone in the hills
No sorrow or pity for leaving, I feel, yeah

I am not your rolling wheels
I am the highway
I am not your carpet ride
I am the sky

I Am the Highway, Audioslave

41

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.42

Composing Objects

¨ We don’t want to have to analyze each memory access to ensure
program is thread-safe

¨ We wish to take thread-safe components and compose them into
larger components or programs

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.22

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.43

Basic elements of designing a thread-safe class

¨ Identify variables that form the object’s state

¨ Identify invariants that constrain the state variables

¨ Establish a policy for managing concurrent access to the object’s state

43

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.44

Synchronization policy

¨ Defines how object coordinates access to its state
¤ Without violating its invariants or post-conditions

¨ Specifies a combination of:
¤ Immutability
¤ Thread confinement
¤ Locking

To maintain
Thread Safety

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.23

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.45

Looking at a counter

public final class Counter {
 private long value=0;

 public synchronized long getValue() {
 return value;
 }

 public synchronized long increment() {
 if (value == Long.MAX_VALUE) {
 throw new IllegalStateException(“Counter Overflow”);
 }
 value++;
 return value;
 }
}

45

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.46

Making a class thread-safe

¨ Ensure that invariants hold under concurrent access
¤ We need to reason about state

¨ Object and variables have state space
¤ Range of possible states
¤ Keep this small so that it is easier to reason about

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.24

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.47

Classes have invariants that tag certain states as
valid or invalid

¨ Looking back at our Counter example

¨ The value field is a long

¨ The state space ranges from Long.MIN_VALUE to Long.MAX_VALUE

¨ The class places constraints on value
¤ Negative values are not allowed

47

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.48

Operations may have post conditions that tag state
transitions as invalid

¨ Looking back at our Counter example

¨ If the current state of Counter is 17
¤ The only valid next state is 18
¤ When the next state is derived from the current state?

n Compound action

¨ Not all operations impose state transition constraints
¤ For e.g., if a variable tracks current temperature? Previous state doesn’t

impact current state

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.25

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.49

Constraints and synchronization requirements

¨ If certain states are invalid?
¤ Underlying state variables should be encapsulated

n If not, client code can put it in an inconsistent state

¨ If an operation has invalid state transitions?
¤ It must be made atomic

49

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.50

Looking at a case where invariants constrain multiple
state variables

public class NumberRange {
 private final AtomicInteger lower = new AtomicInteger(0);
 private final AtomicInteger upper = new AtomicInteger(0);

 public void setLower(int i) {
 if (i > upper.get())
 throw IllegalArgumentException(“lower > upper!”);
 lower.set(i);
 }

 public void setUpper(int i) {
 if (i < lower.get())
 throw IllegalArgumentException(“upper < lower!”);
 upper.set(i);
 }

 public boolean isInRange(int i){
 return (i >= lower.get() && i <= upper.get());
 }
}

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.26

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.51

Problems with NumberRange

¨ Does not preserve invariant that constrains lower and upper

¨ The methods setLower and setUpper attempt this preservation
¤ But they do so poorly!
¤ They are check-then-act sequences that use insufficient locking that precludes

atomicity

51

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.52

Problems with NumberRange

¨ If the number range (0, 10) holds

¨ One thread calls setLower(5) while another calls setUpper(4)

¨ With unlucky timing?
¤ Both calls will pass checks in the setters
¤ Both modifications will be applied

¨ Range is now (5,4) … an invalid state

¨ AtomicInteger is thread-safe, the composite class is not

52

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.27

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.53

Multivariable invariants

¨ Related variables must be fetched or updated in an atomic operation

¨ Don’t:
¤ Update one
¤ Release and reacquire lock, and …
¤ Then update others

¨ The lock that guards the variables
¤ Must be held for the duration of any operation that accesses them

53

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.54

State-dependent operations

¨ Objects may have state-based pre-conditions
¤ E.g., cannot remove item from an empty queue

¨ In a single-threaded program
¤ Operations simply fail

¨ In a concurrent program
¤ Precondition may be true later because of the actions of another thread

54

SLIDES CREATED BY: SHRIDEEP PALLICKARA L6.28

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.55

State dependent operations:
Mechanisms

¨ wait()/notify()
¤ Supported by the JVM and closely tied with intrinsic locking

¨ Other possibilities
¤ Use classes such as blocking queues or semaphores

55

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L7.56

The contents of this slide-set are based on the
following references
¨ Java Concurrency in Practice. Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer,

David Holmes, and Doug Lea. Addison-Wesley Professional. ISBN: 0321349601/978-
0321349606. [Chapters 1, 2, 3 and 4]

¨ https://www.javaspecialists.eu/archive/Issue192b.html

56

