
SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.1

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CSX55: DISTRIBUTED SYSTEMS [THREAD SAFETY]

Shrideep Pallickara
Computer Science

Colorado State University

Retrospective on making a thread-safe class better!
You may extend, but not always
 Depends, it does, on the code maze

Is the fear of making things worse
 Making you scamper from that source?
Composition is the wind in your sails
 Use it, when all else fails

1

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.2

Frequently asked questions from the previous class
survey

¨ Why can’t a shared data structure be used by synchronized methods
of separate classes?

¨ Are all standard data structures typically synchronized?
¨ When is it preferrable to make object references public?

¨ If you use explicit locks, is it possible to acquire the object lock?

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.2

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.3

Topics covered in this lecture

¨ State ownership

¨ Guarding state with private locks
¨ Adding functionality to thread safe classes

¨ Synchronized collections

3

COMPUTER SCIENCE DEPARTMENT

STATE OWNERSHIP

This place is always such a mess
Sometimes I think I’d like to watch it burn
I’m so alone
Feel just like somebody else
Man, I ain’t changed, but I know I ain’t the same

One Headlight, Jakob Dylan, The Wallflowers

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.3

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.5

State ownership

¨ Defining which variables form an object’s state
¤ We wish to consider only that which the object owns

¨ Ownership
¤ Not explicitly specified in the language
¤ Element of program design

5

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.6

State ownership: Encapsulation and ownership go
together

¨ Object encapsulates the state it owns
¤ Owns the state it encapsulates

¨ Owner gets to decide on the locking protocol

¨ If you publish a reference to a mutable object?
¤ You no longer have exclusive control

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.4

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.7

Instance confinement

¨ Object may not be thread-safe
¤ But we could still use it in a thread-safe fashion

¨ Ensure that:
¤ It is accessed by only one thread
¤ All accesses guarded by a lock

7

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.8

Confinement and locking working together

public class PersonSet {
 private final Set<Person> mySet = new HashSet<Person>();

 public synchronized void addPerson(Person p) {
 mySet.add(p);
 }

 public synchronized boolean containsPerson(Person p) {
 return mySet.contains(p);
 }
}

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.5

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.9

Looking at our previous example

¨ State of PersonSet managed by HashSet, which is not thread-
safe

¨ But mySet is
¤ Private
¤ Not allowed to escape
¤ Confined to PersonSet

9

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.10

But we have made no assumptions about Person

¨ If it is mutable, additional synchronization is needed
¤ When accessing Person from PersonSet

¨ Reliable way to achieve this?
¤ Make Person thread-safe

¨ Less-reliable way?
¤ Guard Person objects with a lock
¤ Ensure that clients follow protocol of acquiring appropriate lock, before

accessing Person

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.6

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.11

Instance confinement is the easiest way to build
thread-safe classes

¨ Class that confines it state can be analyzed for thread-safety
¤ Without having to examine the whole program

11

COMPUTER SCIENCE DEPARTMENT

GUARDING STATE WITH
PRIVATE LOCKS

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.7

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.13

Guarding state with a private lock

public class PrivateLock {
 private final Object myLock = new Object();

 private Widget widget; //guarded by myLock

 public void someMethod() {
 synchronized(myLock) {
 //Access and modify the state of the widget

 }
 }

}

13

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.14

Why guard state with a private lock?

¨ Doing so encapsulates the lock
¤ Client code cannot acquire it!

¨ Publicly accessible lock allows client code to participate in its
synchronization policy
¤ Correctly or incorrectly

¨ Clients that improperly acquire an object’s lock cause liveness issues

¨ Verifying correctness with public locks requires examining the entire
program not just a class

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.8

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

VEHICLE TRACKER APPLICATION

15

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.16

A Vehicle Tracker application

¨ Each vehicle
¤ Identified by a String
¤ Location represented by (x,y) coordinates

¨ VehicleTracker class
¤ Tracks the identity and location of all known vehicles

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.9

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.17

Viewer thread and Updater Thread

Map<String, Point> locations = vehicles.getLocations();

for (String key: locations.keySet())
 renderVehicle(key, locations.get(key));

public void vehicleMoved(VehicleMovedEvent evt) {
 Point loc = evt.getNewLocation();
 vehicles.setLocation(evt.getVehicleId(), loc.x, loc.y);
}

Viewer

Updater

17

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.18

The MonitorVehicleTracker
public class MonitorVehicleTracker {
 private final Map<String, MutablePoint> locations;

 public synchronized Map<String, MutablePoint> getLocations() {
 return deepCopy(locations);
 }

 public synchronized MutablePoint getLocation(String id) {
 MutablePoint loc = locations.get(id);
 return loc == null? null: new MutablePoint(loc);
 }

 public synchronized void setLocation(String id, int x, int y){
 MutablePoint loc = locations.get(id);
 if (loc == null) {throw IllegalArgumentException(...)}
 loc.x = x;
 loc.y = y;
 }
 private deepCopy() { ... }
}

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.10

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.19

The tracker class is thread-safe, even though
MutablePoint may not be

public class MutablePoint {
 public int x, y;

 public MutablePoint() {x=0; y=0;}

 public MutablePoint(MutablePoint p) {
 this.x = p.x;
 this.y = p.y;
 }

}

19

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.20

What the deepCopy() looks like

public class MonitorVehicleTracker {

 ...

 private Map<String, MutablePoint>
 deepCopy(Map<String, MutablePoint> m) {
 Map<String, MutablePoint> result =
 new HashMap<String, MutablePoint>();

 for (String id: m.keySet())
 result.put(id, new MutablePoint(m.get(id)));
 return Collections.unmodifiableMap(result);
 }
}

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.11

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.21

The Collections utility class

¨ List<String> readOnlyList =
Collections.unmodifiableList(myList);

¨ Note:
¤ Nothing to differentiate this as a read-only list
¤ You have access to the mutator methods

n But calling them results in an UnsupportedException

21

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.22

Delegating thread-safety
public class DelegatingVehicleTracker {
 private final ConcurrentMap<String, Point> locations;
 private final Map<String, Point> unmodifiableMap;

 public DelegatingVehicleTracker(Map<String, Point>points {
 locations = new ConcurrentHashMap<String, Point>(points);
 unmodifiableMap = Collections.unmodifiableMap(locations);
 }

 public Map<String, Point> getLocations() {
 return unmodifiableMap;
 }

 public Point getLocation(String id) {return locations.get(id);}

 public void setLocation(String id, int x, int y) {
 if (locations.replace(id, new ImmutablePoint(x, y)) == null)
 throw new IllegalArgumentException(“Invalid Vehicle ID);
 }
}

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.12

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.23

Immutable Point

public class ImmutablePoint {
 public final int x, y;

 public ImmutablePoint(int x, int y) {
 this.x = x;
 this.y = y;
 }

}

23

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.24

When delegation fails
public class NumberRange {
 private final AtomicInteger lower = new AtomicInteger(0);
 private final AtomicInteger upper = new AtomicInteger(0);

 public void setLower(int i) {
 if (i > upper.get()) {
 throw IllegalArgumentException(“lower > upper!”);
 }
 }

 public void setUpper(int i) {
 if (i < lower.get()) {
 throw IllegalArgumentException(“upper < lower!”);
 }
 }

 public boolean isInRange(int i){
 return (i >= lower.get() && i <= upper.get());
 }
}

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.13

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

ADDING FUNCTIONALITY TO
EXISTING THREAD-SAFE CLASSES

Good design to me is both appearance and functionality together.
It’s the experience that makes it good design.

Michael Graves

25

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.26

Adding functionality to existing thread-safe classes

¨ Sometimes we have a thread-safe class that supports almost all the
operations we need

¨ We should be able to add a new operation to it without undermining
its thread safety

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.14

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.27

Adding a put-if-absent function to a List

¨ The operation put-if-absent must be atomic

¨ If List does not have X and we add X twice?
¤ It’s a problem because the collection should only have one X

¨ But if put-if-absent is not atomic?
¤ Two threads could see that X is absent and the list then has 2 copies of X

27

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.28

Adding additional operations

① Safest way is to modify the original class

② Extend the class
¤ Often base classes do not expose enough of their state to allow this

approach

③ Place the extension code in a “helper class”

④ Composition

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.15

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.29

Extending Vector to have a put-if-absent method

public class BetterVector<E> extends Vector<E> {

 public synchronized boolean putIfAbsent(E x) {
 boolean absent = !contains(x);

 if (absent) {
 add(x);
 }
 return absent;
 }
}

29

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.30

Client side locking

¨ Sometimes extending a class or adding a method is not possible

¨ For e.g., if ArrayList is wrapped with a
Collections.SynchronizedList wrapper
¤ Client code does not even know the class of the List object

¨ In such situations, the 3rd strategy of using a helper class comes in

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.16

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.31

Client-side locking
public class ListHelper<E> {

 public List<E> list =
 Collections.synchronizedList(new ArrayList<E>());

 ...

 public synchronized boolean putIfAbsent(E x) {
 boolean absent = !list.contains(x);

 if (absent) {
 list.add(x);
 }
 return absent;
 }
}

Using the intrinsic lock of ListHelper to synchronize access to List

31

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.32

Client-side locking: Let’s try again …
public class ListHelper<E> {

 private List<E> list =
 Collections.synchronizedList(new ArrayList<E>());

 ...

 public boolean putIfAbsent(E x) {
 synchronized(list) {
 boolean absent = !list.contains(x);

 if (absent) {
 list.add(x);
 }
 return absent;
 }
 }
}

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.17

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.33

Contrasting extending a class AND client-side locking

¨ Extending a class to add an atomic operation?
¤ Distributes locking code over multiple classes in the object hierarchy

¨ Client-side locking is even more fragile
¤ We put locking code for a Class C in classes that are completely unrelated

to it

33

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.34

Composition: A less fragile alternative to adding an
atomic operation

public class ImprovedList<T> implements List<T> {
 private final List<T> list = new ArrayList<T>();

 ...

 public synchronized boolean putIfAbsent(T x) {
 boolean absent = !list.contains(x);

 if (absent) {
 list.add(x);
 }
 return absent;
 }
 }
 public synchronized void clear() {list.clear();}
 // delegate other list methods ...
}

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.18

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.35

More about the ImprovedList

¨ No worries even if the underlying List is not thread-safe

¨ ImprovedList uses its intrinsic lock

¨ Extra layer of synchronization may add small performance penalty
¤ But it is much better than attempting to mimick the locking strategy of

another object

35

COMPUTER SCIENCE DEPARTMENT

SYNCHRONIZED COLLECTIONS

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.19

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.37

Synchronized collections

¨ These include classes such as Vector and Hashtable

¨ There is also the synchronized wrapper classes
¤ Created by Collections.synchronizedX factory methods

n E.g., Collections.synchronizedList(List list),
Collections.synchronizedMap(Map m),
Collections.synchronizedSet(Set s)

37

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.38

Problems with synchronized collections

¨ Thread-safe but additional client-side locking needed to guard
compound actions
¤ Iteration
¤ Navigation

n Find the next element

¤ Conditional operations
n Put-if-absent

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.20

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.39

Compound actions producing confusing results

public Object getLast(Vector list) {
 int lastIndex = list.size() – 1;
 return list.get(lastIndex);
}

public void deleteLast(Vector list) {
 int lastIndex = list.size() -1;
 list.remove(lastIndex);
}

39

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.40

Interleaving of getLast and deleteLast

remove(9)

get(9) Uh oh!

size –> 10
A

size –> 10
B

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.21

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.41

Are there problems with this code?

for (int i=0; i < vector.size(); i++) {
 doSomething(vector.get(i));
}

There is chance that other threads may modify vector between
the calls to size() and get()

41

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.42

Compound actions using client-side locking

public Object getLast(Vector list) {
 synchronized(list) {
 int lastIndex = list.size() – 1;
 return list.get(lastIndex);
 }
}

public void deleteLast(Vector list) {
 synchronized(list) {
 int lastIndex = list.size() -1;
 list.remove(lastIndex);
 }
}

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.22

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.43

Iterators

¨ The standard way to iterate over a Collection is with an
Iterator

¨ Using iterators does not mean that you don’t need to lock the collection

¨ Iterators returned by synchronized collections are not designed for
concurrent modification

43

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.44

Iterators in synchronized collections

¨ Iterators of synchronized collections are fail-fast

¨ If they detect that the collection has changed since iteration began?
¤ Unchecked ConcurrentModificationException is thrown

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.23

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.45

Fail-fast iterators are not designed to be fool proof

¨ Designed to catch concurrency errors on a good-faith basis

¨ Associate a modification count with the collection

¨ If the modification count changes during iteration?
¤ hasNext() or next() throws
ConcurrentModificationException

45

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.46

Let’s look at this code snippet

List<Widget> widgetList =
 Collections.synchronizedList(new ArrayList<Widget>());

...
for (Widget w: widgetList)
 doSomething(w);

Internally javac generates code that uses Iterator and repeatedly calls
hasNext() and next() to iterate the List

//May throw ConcurrentModificationException

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.24

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.47

How to prevent the
ConcurrentModificationException

¨ Hold the collection lock for the duration of the iteration

¨ Is this desirable?

47

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.48

Issues with locking a collection during iteration

¨ Other threads that need to access the collection will block

¨ If the collection is large or if the task performed on each element is
lengthy?
¤ The wait could be really long

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.25

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.49

Locking collection and scalability

¨ The longer a lock is held
¤ The more likely it will be contended

¨ If many threads are waiting for a lock?
¤ Throughput and CPU utilization plummet

¨ ALTERNATIVE:
¤ Deep-copy the collection and iterate over the copy
¤ The copy is thread-confined

49

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.50

Hidden Iterators

public class HiddenIterator {
 private final Set<Integer> set = new HashSet<Integer>();

 public synchronized void add(Integer i) {set.add(i);}

 public synchronized void remove(Integer i) {set.remove(i);}

 public void diagnostics() {
 System.out.println(“DEBUG: Elements in set: “ + set);
 }
}

¨ Lock should have been acquired for the System.out

¨ Iterators are also invoked for hashCode and equals

50

SLIDES CREATED BY: SHRIDEEP PALLICKARA L8.26

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L8.51

The contents of this slide-set are based on the
following references
¨ Java Concurrency in Practice. Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer,

David Holmes, and Doug Lea. Addison-Wesley Professional. ISBN: 0321349601/978-
0321349606. [Chapters 1, 2, 3 and 4]

¨ https://www.javaspecialists.eu/archive/Issue192b.html

51

