
SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.1

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CSX55: DISTRIBUTED SYSTEMS [THREAD SAFETY]

Shrideep Pallickara
Computer Science

Colorado State University

1

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.2

Frequently asked questions from the previous class
survey

¨ Are collections.unmodifiableList and its variants thread safe?

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.2

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.3

Topics covered in this lecture

¨ Concurrent collections

¨ Synchronizers
¨ Thread safety summary

¨ Distributed Servers
¤ Performance
¤ Amdahl’s Law

3

COMPUTER SCIENCE DEPARTMENT

CONCURRENT COLLECTIONS

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.3

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.5

Locking strategies:
Hashtable & ConcurrentHashMap
¨ Hashtable

¤ Lock held for the duration of each operation
¤ Restricting access to a single thread at a time

¨ ConcurrentHashMap
¤ Finer-grained locking mechanism
¤ Lock striping

5

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.6

Lock striping: How it works

¨ ConcurrentHashMap uses an array of 16 locks
¤ Each lock guards 1/16th of the hash buckets
¤ Bucket N guarded by lock N mod 16

¨ Assuming hash functions provide reasonable spreading characteristics
¤ Demand for a given lock should reduce by 1/16

¨ Enables ConcurrentHashMap to support up to 16 (default)
concurrent writers
¤ A constructor that allows you to specify the concurrency level

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.4

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.7

Downsides of lock striping

¨ Locking the collection for exclusive access
¤ More difficult and costly than a single lock
¤ Done by acquiring locks in the stripe set

¨ When does ConcurrentHashMap need to do this?
¤ If the map needs to be expanded, values need to be rehashed into a larger

set of buckets

7

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.8

Concurrent collections and iterators

¨ Iterators are weakly consistent instead of fail-safe
¤ Do not throw ConcurrentModificationException

¨ Weakly consistent iterator
¤ Tolerates concurrent modification
¤ Traverses elements as they existed when the iterator was created
¤ May (no guarantees) reflect modifications after construction

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.5

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.9

But what are the trade-offs?

¨ Semantics of methods that operate on the entire Map have been
weakened to reflect nature of collection
¤ size() is allowed to return an approximation
¤ size() and isEmpty(): These are far less useful in concurrent

environments

¨ This allows performance improvements for the most important
operations
¤ get, put, containsKey, and remove

9

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.10

One feature offered by synchronized Map
implementations?

¨ Lock the map for exclusive access
¤ With Hashtable and synchronizedMap, acquiring the Map lock

prevents other threads from accessing it

¨ In most cases replacing Hashtable and synchronizedMap with
ConcurrentHashMap?
¤ Gives you getter scalability

¨ If you need to lock Map for exclusive access?
¤ Don’t use the ConcurrentHashMap!

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.6

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.11

Support for additional atomic Map operations

¨ Put-if-absent

¨ Remove-if-equal
¨ Replace-if-equal

11

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.12

ConcurrentMap interface
public interface ConcurrentMap<K,V> extends Map<K,V> {

 //Insert if no value is mapped from K
 V putIfAbsent(K key, V value);

 //Remove only if K is mapped to V
 boolean remove(K key, V value);

 //Replace value only if K is mapped to oldValue
 boolean replace(K key, V oldValue, V newValue);

 //Replace value only if K is mapped to some value
 V replace(K key, V newValue)

}

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.7

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENTSYNCHRONIZERS
13

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.14

Synchronizers

¨ Are objects that coordinate control flow of threads based on its state

¨ Examples
¤ Latches
¤ Semaphores

n Counting and binary

¤ Barriers
n Cyclic and Exchangers

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.8

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.15

Synchronizer: Structural properties

¨ Encapsulate state that determines whether threads arriving at the
synchronizer should:
¤ Be allowed to pass or wait

¨ Provide methods to manipulate state

¨ Provide methods to wait for the synchronizer to enter desired state

15

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.16

Latches

¨ Latch acts as a gate
¤ Until latch reaches terminal state; gate is closed and no threads can pass
¤ In the terminal state: gate opens and allows all threads to pass

¨ Once the latch reaches terminal state?
¤ Cannot change state again
¤ Remains open forever

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.9

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.17

When to use latches

¨ Ensure that a computation does not proceed until all resources that it
needs are initialized

¨ Service does not start until other services that it depends on have
started

¨ Waiting until all parties in an activity are ready to proceed
¤ Multiplayer gaming

17

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.18

CountDownLatch

¨ Allows one or more threads to wait for a set of events to occur

¨ Latch state has a counter initialized to positive number
¤ This is the number of events to wait for

¨ countDown() decrements the counter indicating that an event has
occurred
¤ await() method waits for the counter to reach 0

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.10

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.19

U
sin

g
C

ou
nt

D
ow

nL
at

ch
public class TestHarness {
 public long timeTasks(int nThreads, final Runnable task)
 throws InterruptedException {
 final CountDownLatch startGate = new CountDownLatch(1);
 final CountDownLatch endGate=new CountDownLatch(nThreads);

 for (int i=0; i < nThreads; i++) {
 Thread t = new Thread() {
 public void run() {
 try {
 startGate.await();
 task.run();
 } finally {
 endGate.countDown();
 }
 }
 };
 t.start();
 }
 long start = System.nanoTime();
 startGate.countDown();
 endGate.await();
 long end = System.nanoTime();
 return end-start;
}

19

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.20

Semaphores

¨ Counting semaphores control the number of activities that can:
¤ Access a certain resource
¤ Perform a given action

¨ Used to implement resource pools or impose bounds on a collection

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.11

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.21

Semaphores

¨ Manage a set of virtual permits
¤ Initial number passed to the constructor

¨ Activities acquire and release permits

¨ If no permits are available?
¤ acquire blocks until one is available

¨ The release method returns a permit to the semaphore

21

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.22

Semaphores are useful for implementing resource
pools

¨ Block if the pool is empty
¤ Unblock if the pool is non-empty

¨ Initialize a semaphore to the pool size

¨ acquire a permit before trying to fetch a resource from pool

¨ release the permit after putting the resource back in pool

¨ acquire blocks until the pool is non-empty

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.12

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.23

Binary semaphores

¨ Semaphore with an initial count of 1

¨ Can be used as a mutex with non-reentrant locking semantics
¤ Whoever holds the sole permit holds the mutex

23

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.24

U
sin

g
Se

m
ap

ho
re

s
to

bo

un
d

a
co

lle
ct

io
n

public BoundedHashSet<T> {
 private final Set<T> set;
 private final Semaphore sem;

 public BoundedHashSet(int bound) {
 this.set = Collections.synchronizedSet(new HashSet<T>());
 sem = new Semaphore(bound);
 }

 public boolean add(T o) throws InterruptedException {
 sem.acquire();
 boolean wasAdded = false;
 try {
 wasAdded = set.add(o);
 return wasAdded;
 } finally {
 if (!wasAdded) sem.release();
 }
 }

 public boolean remove(Object o) {
 boolean wasRemoved = set.remove(o);
 if (wasRemoved) sem.release();
 return wasRemoved;
 }
}

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.13

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.25

Barriers

¨ Barriers are similar to latches in that they block a group of threads till
an event has occurred

¨ All threads must come together at barrier point at the same time to
proceed
¤ Latches wait for events, barriers wait for other threads

25

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.26

Barriers and dinner …

¨ Family rendezvous protocol

¨ Everyone meet at Panera @ 6:00 pm;
¤ Once you get there, stay there … till everyone shows up
¤ Then we’ll figure out what we do next

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.14

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.27

Barriers

¨ Often used in simulations where work to calculate one step can be
done in parallel
¤ But all work associated with a given step must complete before advancing

to the next step

¨ All threads complete step k, before moving on to step k+1

27

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.28

CyclicBarrier

¨ Allows a fixed number of parties to rendezvous at a fixed point

¨ Useful in parallel iterative algorithms
¤ Break problem into fixed number of independent subproblems

¨ Creation of a CyclicBarrier
¤ Runnable cyclicBarrierAction = ... ;
CyclicBarrier cyclicBarrier =

new CyclicBarrier(2, cyclicbarrierAction);

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.15

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.29

U
sin

g
C

yl
ic

Ba
rr

ie
rs

class Solver {

 final int N; final CyclicBarrier barrier;

 class Worker implements Runnable {

 int myRow;

 Worker(int row) { myRow = row; }

 public void run() {

 while (!done()) {

 processRow(myRow);

 try {

 barrier.await();

 } catch (BrokenBarrierException ex) {

 ...

 }

 }

 }

 }

 public Solver(float[][] matrix) {

 data = matrix; N = matrix.length;

 barrier = new CyclicBarrier(N, new Runnable() { public void run() {

 mergeRows(...); } });

 for (int i = 0; i < N; ++i)

 new Thread(new Worker(i)).start(); //DO NOT START THREAD in constructor.

 waitUntilDone();

 }

 }

Source: From the Java API

29

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.30

Exchanger

¨ Another type of barrier

¨ Two-party barrier

¨ Parties exchange data at the barrier point

¨ Useful when asymmetric activities are performed
¤ Producer-consumer problem

¨ When 2 threads exchange objects via Exchanger
¤ Safe publication of objects to other party

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.16

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

THREAD SAFETY SUMMARY

31

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.32

Thread Safety: Summary [1/4]

¨ It’s all about mutable, shared state
¤ The less mutable state there is, the easier it is to ensure thread-safety

¨ Make fields final unless they need to be mutable

¨ Immutable objects are automatically thread-safe

¨ Encapsulation makes it practical to manage complexity

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.17

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.33

Thread Safety: Summary [2/4]

¨ Guard each mutable variable with a lock

¨ Guard all variables in an invariant with the same lock

¨ Hold locks for the duration of compound actions

33

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.34

Thread Safety: Summary [3/4]

¨ Program that accesses mutable variables from multiple threads without
synchronization?
¤ Broken program

¨ Include thread-safety in the design process
¤ Document if your class is not thread-safe

¨ Document your synchronization policy

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.18

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.35

Thread Safety: Summary [4/4]

¨ Rather than scattering access to shared state throughout your
programs and attempting ad hoc reasoning about interleaved access

¤ Structure program to facilitate reasoning about concurrency
¤ Use a set of standard synchronization primitives to control access to shared

state

35

COMPUTER SCIENCE DEPARTMENT

PERFORMANCE

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.19

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.37

Measures of performance

¨ Service time

¨ Latency

¨ Throughput

¨ Capacity

¨ Efficiency

¨ Scalability

How fast?

How much?

37

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.38

Performance and Scalability

¨ Tuning for performance
¤ Do same work with less effort
¤ Caching, choice of algorithms O(n2) to O(nlogn)

¨ Scalability
¤ Find ways to parallelize problem
¤ Do more work with more resources

How fast?

How much?

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.20

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.39

HOW FAST and HOW MUCH

¨ Are separate and can (at times) be at odds with each other

¨ To scale or for better hardware utilization
¤ We often end up increasing the amount of work for each task
¤ Divide tasks into multiple pipelined tasks

n Orchestration overhead

39

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.40

The quest for performance

¨ What do you mean by faster?

¨ Under what conditions?
¤ Small or large datasets
¤ Perform measurements to substantiate arguments

¨ How often do these conditions arise?

¨ What are the hidden costs?
¤ Development/maintenance risks
¤ Tradeoffs
¤ Ripple effects of decision

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.21

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.41

Avoid premature optimizations

¨ First make it right, then fast

¨ Measure, don’t guess

¨ Quest for performance is one of the biggest source of bugs

41

COMPUTER SCIENCE DEPARTMENT

AMDAHL’S LAW

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.22

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.43

How much can we speed things up?

¨ Harvesting crops
¤ The more the number of workers
¤ The faster the crop can be harvested

¨ But some things are fundamentally serial
¤ Adding additional workers does not make the crop grow faster

43

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.44

The right tool for the right job: Everything is not a
nail

¤ Make sure that problem is amenable to parallel decomposition

¤ Most programs have a mix of parallelizable and serial
portions

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.23

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.45

Amdahl’s law describes how much a program can be
theoretically sped up

¨ F : Fraction of components that must be executed serially

¨ N : Number of available processors

€

Speedup ≤ 1

F +
(1− F)
N

€

Utilization =
Speedup

N

45

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.46

As N approaches infinity; maximum speedup
converges to 1/F

¨ With 50% serial code
¤ Maximum speedup is 2

¨ With 10% serial code
¤ Maximum speedup is 10
¤ With N= 10

n Speedup = 5.3 at 53% utilization

¤ With N= 100
n Speedup = 9.2 at 9% utilization

46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.24

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.47

Speedups for different parallelization portions

Source: http://en.wikipedia.org/wiki/Amdahl's_law

47

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.48

Know what to speed up

Image from: http://en.wikipedia.org/wiki/Amdahl's_law

48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.25

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L9.49

The contents of this slide-set are based on the
following references
¨ Java Concurrency in Practice. Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer,

David Holmes, and Doug Lea. Addison-Wesley Professional. ISBN: 0321349601/978-
0321349606. [Chapters 1, 2, 3 and 4]

¨ https://www.javaspecialists.eu/archive/Issue192b.html

49

