CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

CSx55: DISTRIBUTED SYSTEMS [THREAD SAFETY]

Shrideep Pallickara
Computer Science
Colorado State University

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

Frequently asked questions from the previous class
survey

Are collections.unmodifiableList and its variants thread safe?

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.2

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.1

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Topics covered in this lecture

Concurrent collections
Synchronizers
Thread safety summary

Distributed Servers

Performance
Amdahl’s Law
COLORADO STATE UNIVERSITY 88;;58;;;R§§;LA$LECKSE:ARTMENT THREAD SAFETY L9.3

CONCURRENT COLLECTIONS

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.2

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Locking strategies:
Hashtable & ConcurrentHashMap

Hashtable

Lock held for the duration of each operation

Restricting access to a single thread at a time

ConcurrentHashMap

Finer-grained locking mechanism

Lock striping

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY Le.5

5

Lock striping: How it works

ConcurrentHashMap uses an array of 16 locks

Each lock guards 1/16™ of the hash buckets
Bucket N guarded by lock N mod 16

Assuming hash functions provide reasonable spreading characteristics

Demand for a given lock should reduce by 1/16

Enables ConcurrentHashMap to support up to 16 (default)
concurrent writers

A constructor that allows you to specify the concurrency level

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.6

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.3

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Downsides of lock striping

Locking the collection for exclusive access
More difficult and costly than a single lock

Done by acquiring locks in the stripe set

When does ConcurrentHashMap need to do this?

set of buckets

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY

If the map needs to be expanded, values need to be rehashed into a larger

Lo.7

7

Concurrent collections and iterators

lterators are weakly consistent instead of fail-safe

Do not throw ConcurrentModificationException

Weakly consistent iterator
Tolerates concurrent modification
Traverses elements as they existed when the iterator was created

May (no guarantees) reflect modifications after construction

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY

L9.8

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L9.4

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

But what are the trade-offs?

Semantics of methods that operate on the entire Map have been
weakened to reflect nature of collection
size () is allowed to return an approximation

size () and isEmpty () : These are far less useful in concurrent
environments

This allows performance improvements for the most important
operations

get, put, containsKey, and remove

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY Le.9

9

One feature offered by synchronized Map
implementations?

Lock the map for exclusive access

With Hashtable and synchronizedMap, acquiring the Map lock
prevents other threads from accessing it

In most cases replacing Hashtable and synchronizedMap with
ConcurrentHashMap?

Gives you getter scalability

If you need to lock Map for exclusive access?

Don’t use the concurrentHashMapl!

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.10

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L9.5

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Support for additional atomic Map operations

Put-if-absent
Remove-if-equal

Replace-if-equal

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY Le.1

11

ConcurrentMap interface

public interface ConcurrentMap<K,V> extends Map<K,V> {

//Insert if no value is mapped from K
V putIfAbsent (K key, V value);

//Remove only if K is mapped to V
boolean remove (K key, V value);

//Replace value only if K is mapped to oldvalue
boolean replace (K key, V oldValue, V newValue);

//Replace value only if K is mapped to some value
V replace (K key, V newValue)

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.12

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.6

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Synchronizers
|

01 Are objects that coordinate control flow of threads based on its state

0 Examples
o Latches
o Semaphores
® Counting and binary
o Barriers

® Cyclic and Exchangers

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY GompyteR SCIENCE DEPARTMENT THREAD SAFETY Lo.14

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.7

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Synchronizer: Structural properties

Encapsulate state that determines whether threads arriving at the
synchronizer should:

Be allowed to pass or wait

Provide methods to manipulate state

Provide methods to wait for the synchronizer to enter desired state

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY Lo.15

15

Latches

Latch acts as a gate

Until latch reaches terminal state; gate is closed and no threads can pass

In the terminal state: gate opens and allows all threads to pass

Once the latch reaches terminal state?
Cannot change state again

Remains open forever

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.16

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.8

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

When to use latches

Ensure that a computation does not proceed until all resources that it
needs are initialized

Service does not start until other services that it depends on have
started

Woaiting until all parties in an activity are ready to proceed

Multiplayer gaming

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY Le.17

17

CountDownlLatch

Allows one or more threads to wait for a set of events to occur

Latch state has a counter initialized to positive number

This is the number of events to wait for
countDown () decrements the counter indicating that an event has
occurred

await () method waits for the counter to reach @

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.18

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.9

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

public class TestHarness {

throws InterruptedException {

}
long start = System.nanoTime () ;
startGate.countDown () ;
endGate.await () ;

long end = System.nanoTime () ;
COLOR/ return end-start;

< for (int i1i=0; i1 < nThreads; 1i++) {

49 Thread t = new Thread() {

O public void run() {

— try {

§ startGate.await () ;
task.run () ;

Do } finally {

endGate.countDown () ;

e

c }

D }

O }i

U t.start () ;

(@)

c

‘"

>

&

public long timeTasks (int nThreads, final Runnable task)

final CountDownLatch startGate = new CountDownLatch (1) ;
final CountDownLatch endGate=new CountDownLatch (nThreads) ;

L9.19

19

Semaphores

Access a certain resource

Perform a given action

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT

Counting semaphores control the number of activities that can:

THREAD SAFETY

Used to implement resource pools or impose bounds on a collection

L9.20

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L9.10

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Semaphores

Manage a set of virtual permits

Initial number passed to the constructor
Activities acquire and release permits

If no permits are available?

acquire blocks until one is available

The release method returns a permit to the semaphore

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY Lo.21

21

Semaphores are useful for implementing resource
pools

Block if the pool is empty
Unblock if the pool is non-empty

Initialize a semaphore to the pool size
acquire a permit before trying to fetch a resource from pool
release the permit after putting the resource back in pool

acquire blocks until the pool is non-empty

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.22

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA 9.11

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Binary semaphores

Semaphore with an initial count of 1

Can be used as a mutex with non-reentrant locking semantics

Whoever holds the sole permit holds the mutex

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY Lo.23

23

public BoundedHashSet<T> {
private final Set<T> set;
private final Semaphore sem;

public BoundedHashSet (int bound) {
this.set = Collections.synchronizedSet (new HashSet<T>());
sem = new Semaphore (bound) ;

}

public boolean add (T o) throws InterruptedException {
sem.acquire () ;
boolean wasAdded = false;
try {
wasAdded = set.add (o) ;
return wasAdded;
} finally {
if (!wasAdded) sem.release();
}
}

public boolean remove (Object o) {
boolean wasRemoved = set.remove (0);
if (wasRemoved) sem.release();
return wasRemoved;

bound a collection

COLOR| L9.24

@ Using Semaphores to

N
N

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.12

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Barriers

Barriers are similar to latches in that they block a group of threads fill

an event has occurred

All threads must come together at barrier point at the same time to

proceed
Latches wait for events, barriers wait for other threads

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY Lo.25

25

Barriers and dinner ...

Family rendezvous protocol

Everyone meet at Panera @ 6:00 pm;
Once you get there, stay there ... till everyone shows up

Then we'll figure out what we do next

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.26

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.13

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Barriers

Often used in simulations where work to calculate one step can be
done in parallel

But all work associated with a given step must complete before advancing
to the next step

All threads complete step &, before moving on to step k+1

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY Le.27

27

CyclicBarrier

Allows a fixed number of parties to rendezvous at a fixed point

Useful in parallel iterative algorithms

Break problem into fixed number of independent subproblems

Creation of a CyclicBarrier

Runnable cyclicBarrierAction = ... ;
CyclicBarrier cyclicBarrier =
new CyclicBarrier (2, cyclicbarrierAction) ;

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.28

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L9.14

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

class Solver {
final int N; final CyclicBarrier barrier;
class Worker implements Runnable {
int myRow;
Worker (int row) { myRow = row; }
public void run() {
while (!done()) {
processRow (myRow) ;
try {
barrier.await () ;

} catch (BrokenBarrierException ex) {

}

Using Cylic Barriers

Source: From the Java API

public Solver (float[][] matrix) {
data = matrix; N = matrix.length;
barrier = new CyclicBarrier (N, new Runnable() { public void run() {
mergeRows (...); } });
for (int i = 0; 1 < N; ++1)
new Thread (new Worker (i)) .start(); //DO NOT START THREAD in constructor.
COLOR/ waitUntilDone () ; L9.29
29
Exchanger
Another type of barrier
Two-party barrier
Parties exchange data at the barrier point
Useful when asymmetric activities are performed
Producer-consumer problem
When 2 threads exchange objects via Exchanger
Safe publication of objects to other party
COLORADD STATE UNIVERSITY (oo e e arrment THREAD SAFETY 19.30

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L9.15

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

THREAD SAFETY SUMMARY

UTER SCIENCE'

s 2 o
\@9 COLORADO STATE URIVERSITY

31

Thread Safety: Summary [1/4]
B

0 It’s all about mutable, shared state

The less mutable state there is, the easier it is to ensure thread-safety

1 Make fields £inal unless they need to be mutable

0 Immutable objects are automatically thread-safe

-1 Encapsulation makes it practical to manage complexity
COLORADD STATE UNIVERSITY (oo e e arrment THREAD SAFETY 19.32
32

SLIDES CREATED BY: SHRIDEEP PALLICKARA

L9.16

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Thread Safety: Summary [2/4]

Guard each mutable variable with a lock

Guard all variables in an invariant with the same lock

Hold locks for the duration of compound actions

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY Lo.33

33

Thread Safety: Summary [3/4]

Program that accesses mutable variables from multiple threads without
synchronization?

Broken program

Include thread-safety in the design process

Document if your class is not thread-safe

Document your synchronization policy

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.34

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.17

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Thread Safety: Summary [4/4]

Rather than scattering access to shared state throughout your
programs and attempting ad hoc reasoning about interleaved access

Structure program to facilitate reasoning about concurrency

Use a set of standard synchronization primitives to control access to shared
state

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY Lo.35

35

SLIDES CREATED BY: SHRIDEEP PALLICKARA [9.18

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Measures of performance
Service time
:l- How fast?
Latency
Throughput
How much?
Capacity
Efficiency
Scalability
37
Performance and Scalability
Tuning for performance
Do same work with less effort How fast?
ow fast?
Caching, choice of algorithms O(n?) to O(nlogn)
Scalability
Find ways to parallelize problem } How much?
Do more work with more resources
COLORADD STATE UNIVERSITY (oo e e arrment THREAD SAFETY L9.38
38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.19

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

HOW FAST and HOW MUCH

Are separate and can (at times) be at odds with each other

To scale or for better hardware utilization

We often end up increasing the amount of work for each task
Divide tasks into multiple pipelined tasks

Orchestration overhead

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY Le.39

39

The quest for performance

What do you mean by faster?

Under what conditions?
Small or large datasets

Perform measurements to substantiate arguments

How often do these conditions arise?

What are the hidden costs?

Development /maintenance risks

Tradeoffs
Ripple effects of decision
COLORADD STATE UNIVERSITY (oo e e arrment THREAD SAFETY L9.40

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.20

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Avoid premature optimizations

First make it right, then fast
Measure, don’t guess

Quest for performance is one of the biggest source of bugs

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY Lo.41

41

AMDAHL’S LAW

COMPUTER SCIENCE DEPARTMENT COLORADO STATE UNIVERSITY

42

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.21

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

How much can we speed things up?

Harvesting crops
The more the number of workers

The faster the crop can be harvested

But some things are fundamentally serial

Adding additional workers does not make the crop grow faster

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY Lo.43

43

The right tool for the right job: Everything is not a
nail

Make sure that problem is amenable to parallel decomposition

Most programs have a mix of parallelizable and serial
portions

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY COMPUTER SCIENCE DEPARTMENT THREAD SAFETY L9.44

44

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.22

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Amdahl’s law describes how much a program can be

th ticall d
| Jheoretically sped up

01 I : Fraction of components that must be executed serially

71 N : Number of available processors

1
Speedup <« —————
P P (1-F)
F+
N
e Speedu
Utilization = ~2“—
45
As N approaches infinity; maximum speedup
converges to 1/F
(e
o With 50% serial code
Maximum speedup is 2
o With 10% serial code
Maximum speedup is 10
With N= 10
m Speedup = 5.3 at 53% utilization
With N= 100
B Speedup = 9.2 at 9% utilization
COLORADD STATE UNIVERSITY (oo e e arrment THREAD SAFETY L9.46
46

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.23

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

Speedups for different parallelization portions
B
Amdahl's Law
20 i
L~
® // arallel portion
16 //) |||p50t%
// 75%
—— 90%
“ / —— 95%
o 2 /
§. 10 / g
¢ 8
6
4
2 |
0
-8 Y @2 8§83 8§ 8 ¥ 3 ¢ 8 8 3 8 8
=8P EREEES B
Number of processors
Source: hﬂ‘p:// SIHWIRIPSUIU.UIY/ WIKI/ ATIUUIT S_IUW
47
Know what to speed up
B
Two independent parts A B
Original process I
Make B 5x faster |
Make A 2x faster |
Image from: http.’//en.wiki;lge?ia. o.rgxgzg/é{ﬁtg(%tz 's law
IZ:IZILI:IRADD STATE UNIVERSITY CoupUreR SOIENCE DepARTMENT THREAD SAFETY L9.48
48

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.24

CSx55: Distributed Systems
Dept. Of Computer Science, Colorado State University

The contents of this slide-set are based on the
following references

Java Concurrency in Practice. Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer,
David Holmes, and Doug Lea. Addison-Wesley Professional. ISBN: 0321349601 /97 8-
0321349606. [Chapters 1, 2, 3 and 4]

https://www.javaspecialists.eu/archive /Issue192b.html

Professor: SHRIDEEP PALLICKARA
COLORADO STATE UNIVERSITY CopmpyteR SCIENCE DEPARTMENT THREAD SAFETY Lo.49

49

SLIDES CREATED BY: SHRIDEEP PALLICKARA L9.25

