Recurrent neural networks for moisture content prediction in seed corn dryer buildings

Daniel L. Elliott 1, 2
Russell E. Valentine 1

1 Colorado State University, 2 Exoteric Analytics

Introduction
- The seed is conditioned after harvest and prior to removal from the cob to prevent kernel damage and force the germ into a dormant state.
- Seed corn conditioning has not advanced significantly from the 1940’s or earlier.
- Seed corn conditioning is a relatively short part of the seed production process, yet it is crucial.
 - The conditioning step can have dramatic influence on seed quality.
 - Expensive in terms of labor, supplies, and infrastructure.
 - It is a bottleneck in the production process.
- It is time that it catch up with other aspects of corn production.
- Better MC prediction will lead to lower production costs.

Dryer building (top and bottom levels respectively)

Seed conditioning
- Heated air enters the building through the second level.
- Traditionally, air is forced upward through bin then “rolled” so that air is forced downward.
- Costs:
 - Fuel for burners.
 - Electricity to operate fans.
 - Labor:
 - Checking MC is time consuming, miserable, and slightly dangerous.
 - Farm personnel have other functions to perform.

Method
- Experimented with ESN and Elman nets.
- Training:
 - ESN: least squares fit.
 - Elman: scaled conjugate gradient descent.
 - 100 time step transient phases.
- Data:
 - Sensors placed at top and bottom of each bin.
 - Data collected from bin 1 only during 2010 harvest.
 - 26 target MC values collected by hand.
 - Total of 12 sequences:
 - 6 bin fills
 - Each fill split into up air and down air sequences.
 - 4096 sensor readings.

- Experimental parameters:
 - $N_{ov} \in \{50, 100, 150, 200\}$
 - $C \in \{0.05, 0.15, 0.25, 0.35, 0.45, 0.55\}$
 - $\alpha \in \{0.05, 0.2, 0.35, 0.50, 0.65, 0.80, 0.95\}$
 - $\beta \in \{0.05, 0.2, 0.4, 0.6, 0.8, 1.0\}$
 - $N_{h} \in \{2, 5, 8, 11, 14, 17, 20\}$
 - $M \in \{1, 6, 11, 16\}$
 - Each parameter combination run 30 times (5 times when holding each of the fills out as testing data).
 - Evaluated using NMSE on test sequences.

Results

ESN results:
<table>
<thead>
<tr>
<th>N_{ov}</th>
<th>C</th>
<th>α</th>
<th>NMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.45 0.35 0.05</td>
<td>0.578913</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.35 0.35 0.05</td>
<td>0.6013203</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.25 0.65 0.05</td>
<td>0.6975664</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.05 0.50 0.05</td>
<td>0.6468151</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.55 0.35 0.05</td>
<td>0.653451</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.45 0.80 0.05</td>
<td>0.697945</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.55 0.95 0.05</td>
<td>0.690459</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.15 0.95 0.05</td>
<td>0.7029377</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.35 0.20 0.05</td>
<td>0.7371813</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.55 0.50 0.05</td>
<td>0.7399295</td>
<td></td>
</tr>
</tbody>
</table>

Elman net results:
<table>
<thead>
<tr>
<th>N_{ov}</th>
<th>M</th>
<th>C</th>
<th>α</th>
<th>NMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>2</td>
<td>6</td>
<td>58.91708</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>11</td>
<td>16</td>
<td>61.03219</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>5</td>
<td>1</td>
<td>61.21644</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>2</td>
<td>11</td>
<td>63.40314</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>5</td>
<td>11</td>
<td>66.90055</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>2</td>
<td>16</td>
<td>67.24177</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>2</td>
<td>1</td>
<td>67.43733</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>20</td>
<td>6</td>
<td>69.31692</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>8</td>
<td>1</td>
<td>69.43959</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>5</td>
<td>16</td>
<td>69.48544</td>
<td></td>
</tr>
</tbody>
</table>

- ESN with $\alpha = 0.05$ performed best.
 - Small spectral radius implies linear dynamics drove prediction.
 - Smaller N_{ov} clearly preferred.
 - Implies only a small window historical information is used in the MC predictions.
 - Elman nets also suffered with growing net size

Conclusions and future work
- Full power of ESN may not have been necessary for this simplified model.
 - Probably necessary as model is expanded to take more variables into account.
 - Should be compared against ANN with time delay inputs.
 - Expand model to take more parameters into account.
 - Wind speed.
 - Ambient conditions.
 - Estimated moisture content of seed in all bins.
 - Run model in closed-loop mode.
 - Learn to associate data with quality metrics?
 - Learn control policy for burners and fans.
 - Optimize for cost reduction.
 - Allow user to meet variable target drying rates.
 - Expand control policy to include bypass and bin door positions.
 - Optimization of other seed plant processes.

Acknowledgments
We express our gratitude to Elliott Forney (http://www.cs.colostate.edu/~idfah) for supplying the basis of our ESN and Elman net implementations and to Gangwish Seed Farms in Shelton, Nebraska for allowing us to use their data.