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Abstract

Computational selective attention systems have mostly
been developed as models of human attention, and they have
been evaluated on that basis. Now, however, they are be-
ing used as front ends to object recognition systems, and
in particular to appearance-based recognition systems. As
such, they need to be evaluated by other criteria. A com-
mon goal for object recognition systms in invariance to 2D
similarity transformations (i.e. in-plane translations, rota-
tions, reflections and scales). This implies that attention
systems used as front ends should also be invariant to sim-
ilarity transforms. This paper evaluates the Neuromorphic
Vision Toolkit (NVT), a well known and publicly available
selective attention system, and finds it to be highly sensitive
to 2D similarity transforms. Further investigation, how-
ever, suggests that this sensitivity is an artifact of the pub-
licly available implementation, and not of the neuromor-
phic principles it is based on. Therefore we have developed
a new system, called SAFE (Selective Attention as a Front
End), that is conceptually similar to NVT. However, SAFE
is largely invariant to 2D similarity transformations of the
source image and selects scales as well as spatial locations
for fixations, implementing a combined “zoom-spotlight”
model of attention.

1. Introduction

In the primate visual system, it is believed that only se-
lect locations of a scene are processed in detail, [1, 3, 18]
and these locations are commonly referred to as the salient
fixations of a scene. Cognitive scientists believe that fixa-
tions are selected both bottom-up, in response to the con-
tents of the current scene, and top-down, reflecting current
goals [18, 24]. There are a number of computational sys-
tems that attempt to model aspects of selective attention,
including [13, 14, 24, 23, 19, 8, 22, 16].

Most of these systems were intended as cognitive models

of human attention, and have therefore been evaluated by
cognitive science measures, such as the “pop-out” effect [6],
their speed in relation to human performance [6], and fi-
delity to human eye tracking experiments [20]. More and
more, however, computational models of selective attention
are utilized as the front end to automatic object recognition
systems, and in particular to appearance-based systems (e.g.
[26]). In this case, they need to be evaluated by other crite-
ria.

Appearance-based recognition systems match features
extracted from image patches to features stored in memory.
In general, appearance-based matching is not invariant to
3D geometric transformations. 3D object recognition is im-
plemented by matching to features extracted from many dif-
ferent views of an object, often interpolating between view-
points (e.g. [15]).

To keep the number of appearance-based templates man-
ageable, however, it is helpful if appearance matching is in-
variant to 2D similarity transformations (i.e. 2D translation,
rotation, reflection and scale1) of the image. This is the ad-
vantage of using a selective attention system as a front end;
it focuses on objects to match, regardless of their position in
the (2D) image. It implies, however, that selective attention
systems should be invariant to 2D similarity transforms, at
least in this context.

This paper presents two simple methods for empirically
measuring the invariance of selective attention systems in
response to 2D transformations. The first looks for gross
errors, and measures how often fixations extracted from a
transformed version of a test image corresponds to fixations
extracted from the original image. The second measures
the median drift in the position of fixations extracted from
transformed and non-transformed versions of the same im-
age. It should be noted that neither of these methods deter-
mine whether a fixation location is good or bad; they simply

1This is sometimes called a 4DOF affine transformation, but since the
term “affine” usually refers to transformations with 6 DOF (the extra two
degrees of freedom permit shearing), we stick with the older terminology
of similarity transformations here.



measure whether the selective attention system is sensitive
to 2D similarity transforms.

Using these measures, we evaluate the Neuromorphic
Vision Toolkit (NVT), a well-known and publicly available
selective attention system developed at CalTech and USC
(see ilab.usc.edu/bu). We find, unfortunately, that NVT
is highly sensitive to 2D similarity transformations, and is
therefore not a good candidate to serve as the front end to
an object recognition system, even though it has been used
for this purpose [26]. The extreme sensitivity to 2D trans-
formations evident in this study is not an inherent feature
of neuromorphic principles, however, but rather an artifact
of the publicly available implementation. We have there-
fore implemented a new selective attention system, called
SAFE (Selective Attention as a Front End) based on similar
neuromorphic principles. However, SAFE is more robust to
similarity transformations and selects in scale in addition to
spatial coordinates following a combined “zoom-spotlight”
model of attention.

2. Background: Models of Attention

It has long been theorized that the primate visual sys-
tem does not passively process all the information in the vi-
sual field, but rather selectively attends to specific locations
(for a review, see [18], Chapter 11). Within the selective
attention paradigm, cognitive scientists have proposed two
competing models of visual attention, the so-called “spot-
light” and “zoom lens” models. The spotlight model can
be metaphorically described as a pen light moving across a
dark scene. When the spotlight stops at a location, that loca-
tion is illuminated or attended to. It is a strictly spatial view
of attention that moves with the inner-eye. The zoom lens
model, on the other hand, suggests a metaphor of looking
at a scene through the zoom lens of a camera. The viewer
can attend to tiny objects by close inspection, or “zoom-
out” and attend to larger or coarser objects [5, 18, 17]. In
essence, the attention window selects a scale. However,
both these models could be considered limiting, so Palmer
refers to a model that selects both location and scale as a
combined model [18]. We refer to this combined model as
a “zoom-spotlight” model of attention.

There is growing biological evidence for the zoom-
spotlight model. Oliva and Schyns, for example, demon-
strate bottom-up queueing of selective attention at specific
spatial frequencies [17]. Figure 1 helps illustrate such dif-
ferences. When we “zoom-out” we can see concentric
rings, but it is difficult to discern the wording unless one
focuses in on each letter and follows the path. Notice that
when one is focused on “here” it is difficult to focus on “fo-
cus” without switching our attention, yet a moment ago one
was able to focus on all the rings.

There are advantages for appearance-based object recog-

Figure 1. A visual display illustrates the diffi-
culty of attending to two different regions and
scales at the same moment. Attention shifts
are needed to see the entire image or to focus
on individual words and letters.

nition systems to the zoom-spotlight model. Appearance-
based systems match patches of the current image to patches
of previously seen images, and focus of attention mecha-
nisms are required for selecting the patches. In the pen light
model, the selected image patch will always be at a fixed
resolution, since scale is not selected as part of the atten-
tion system. This can be a problem if the system needs to
recognize objects of varying sizes. In the zoom-spotlight
model, on the other hand, the attention system can vary the
resolution of the selected image patch, allowing the system
to match a wider range of objects. We therefore believe
the zoom-spotlight model may be better suited when impli-
menting visual attention as a front end to an appearance-
based matching.

The zoom-spotlight model is a unitary model of selec-
tive attention; it assumes that humans can focus attention on
only one fixation point at a time. There is evidence, how-
ever, that people may be able to simultaneously focus atten-
tion on multiple fixation points [21, 25]. If this is true, there
is a critical question about how multiple attention windows
are interpreted. If they are interpreted independently, then
the difference between unitary and multiple-focus models
is a matter of scheduling and capacity (whether the win-
dows are processed concurrently or sequentially). If there
are interactions between the interpretation processes, how-
ever, then the difference between unitary and multiple-focus
models is more significant. It is not clear, however, how to
take significant advantage of a variable number of concur-



rent attention windows within an appearance-based recog-
nition paradigm, so we restrict ourselves to unitary (or
multiple-focus but independent) models here.

3 Background: Neuromorphic Vision

A currently popular model of visual attention is embed-
ded in the Neuromorphic Vision Toolkit (NVT), developed
by Koch, Itti et al. at the California Technical Institute and
the University of Southern California [20, 11, 10, 8, 7, 6],
and based on a line of research dating back to work by
Koch and Ullman in 1985 [12]. The goal of NVT is to
design vision systems organized similarly to biological vi-
sion systems. Primate vision systems are constructed of
highly specified cell organizations. In this organization,
key characteristics have been found; most notably the ex-
citatory and inhibitory opponent-processing interaction be-
tween the early processing cells. This exhibits an on-center
and off-surround effect in association with different types
of stimuli. For example, green is excitatory if the sur-
round is red within the retinal ganglion cells [1, 18]. Also,
within the superior colliculus and intraparietal sulcus there
appear to be several neuronal maps which specifically en-
code the salience of visual scenes [2]. Koch and colleagues
have therefore organized their neuromorphic vision system
around two principles. First, feature maps are constructed
of on-center and off-surround differences within different
stimuli. Second, feature maps are combined into “saliency”
maps, where the maximum value in the salience map is
attended to by the attention spotlight, and saliency maps
evolve to allow for multiple feature selection [6].

The design of NVT is shown in Figure 2. The image
is split into three independent channels, one for intensity,
one for oponent colors, and one for edge information. The
opponent color channel is then divided into two subchan-
nels, one for red vs. green opponency, and the other for
blue vs. yellow. The edge channel is also divided, this time
into four subchannels according to edge orientation (
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and ���	� degrees). Image pyramids are used to simulate
multi-scale processing in each subchannel.

Every scale of every subchannel is conceptually con-
volved with an on-center, off-surround mask. (The imple-
mentation is slightly different; see below.) The responses
to this mask are normalized based on the responses of other
pixels within a neighborhood, and summed across scales to
produce a single saliency map for every subchannel. The
subchannel saliency maps are then normalized and summed
to produce one saliency map per channel. These channel
saliency maps are renormalized again and summed to pro-
duce a single saliency map for the image. A neural network
selects the first fixation from the saliency map. The values
around this location are then suppressed, and the neural net-
work is called again to choose the next fixation, in a process

Figure 2. The model presented.

that repeats until the desired number of fixations have been
selected. For more information, see [11, 10, 8, 6, 20].

It is important to note that there are other computational
models of selective attention. Maki et al present a system
that exploits motion and stereo depth perception for selec-
tion attention [13]. Tsotsos et al. present a more general
neural network model that uses selective tuning [23]. Park
et al. recently introduced a system similar to NVT, except
that they use independent component analysis to impliment
a feature competition scheme [19]. The mentioned here are
just a few in a quickly growing feild of visual attention mod-
els each with inheriant strengths and limitations.

4. Evaluating Visual Attention Models

Computational models of selective attention such as
NVT serve two purposes, as cognitive models of primate vi-
sion and as components of computer vision systems. They
are difficult to evaluate in either context. Evaluating at-
tention systems as cognitive models is hard because of the
lack of ground truth data. Eye tracking systems record
eye movements, but cannot measure the “inner eye’s” at-
tentional fixations (or selected scales). Nonetheless, there
is presumably some relation between ocular and attentional
fixations, and Parkhurst et. al. are able to demonstrate that
the fixations selected by NVT correspond better to human
eye tracking data than do random signals [20]. Attention
selection systems have also been evaluated cognitively in
terms of response time and the visual “pop out” effect [6].

Evaluating attention systems as components of computer
vision (or object recognition) systems is no easier. Once



Figure 3. Image 1: Pumpkins, Image 2: to-
Class, Image 3: Fractal 7

again, the optimal sequence of attention windows is un-
known, so there is no ground truth data. We can, how-
ever, test for invariance. We would like a selective atten-
tion system to be invariant to 2D similarity transformations.
In other words, we would like the system to attend to the
same features in a scene, whether or not the scene has been
translated, rotated, reflected or scaled. This is particularly
important for appearance based recognition systems, since
an invariant focus of attention system has the property that
it solves the 2D registration problem.

To test the invariance of NVT to similarity transforma-
tions, we apply it to test images and to transformed versions
of the test images. Ideally, NVT should return the same 2D
fixations for both images, once we compensate for the ge-
ometric transformation. Since NVT uses image size as a
processing parameter, both the source and transformed im-
ages are the same size2. To make sure that rotations and
translations do not alter the content of the scene, every test
image is surrounded by a large black border.

The image transformations tested are translation (down
and to the right) by 1, 7 and 32 pixels, rotation from 45
to 315 degrees in increments of 45 degrees, and reflections
about the horizontal and vertical axes. (Scale will be dis-
cussed in Section 7.) Thus we tested 12 transformations
for every test image. The test images are shown in Fig-
ure 3. The first image is bright, with many potential interest
points. The second image is fairly dark, and therefore pro-
vides low overall stimulation. The third image is a fractal
image, with many bright colors and strong edges. Since all
of the (untransformed) test images have black borders, none
of the fixations are mapped to coordinates outside the image
by any of the transformations.

We quantify the performance of an attention system
through two measures. The first looks for gross errors, and
records the percentage of fixations in the test image that are
not within a threshold radius of any fixation in the trans-
formed image, once the geometric transformation is com-

2Except when testing for scale invariance; see Section 7.

pensated for. The reported number is therefore a gross error
rate. (In these experiments, the radius threshold was 1/48th
of the image size, roughly between 17-18 pixels.)

The second measure is a form of the Hausdorf distance
metric. It measures positional noise, assuming that at least
half the fixations identified in the test image are also found
in the transformed image. In particular, it is the median
positional drift, as measured by:

���������	��

���������	������
����
����
�������������� �!��"#�$�%�&"�'(' �*),+-'(' ./� (1)

where A is the set of fixations from the original test image,
and B is the set of compensated fixations from the trans-
formed test image. As long as fewer than half the loca-
tions are outliers, this statistic reflects the positional noise
between the two sets of fixations. If more than half the
points are outliers, as measured by our first statistic, then
this measure is not meaningful and is not reported.

5. Evaluating NVT

Using these tests, we evaluated the Neuromorphic Vi-
sion Toolkit (NVT) discussed above. NVT was parameter-
ized to extract 25 fixations for every image. Since NVT has
non-deterministic components in the neural network, we re-
peated each test 10 times. Table 1 shows the average gross
error rate and average median positional drift for every im-
age and transformation. The gross error rates are particu-
larly startling. Simple image rotations lead to error rates
between 12% and 84%; if we average across images and
rotations, we get an average gross error rate of over 44%.
This suggests that if we apply NVT to an image and its ro-
tation, on average 11 of the 25 features identified as fixa-
tions in the first image will not be identified as fixations in
the rotated image. Poor performance is also demostrated in
translations and reflections. Although a small translation of
one pixel down and to the right had no effect in terms of
gross errors on two of the test images, on the fractal image
even this simple transformation caused 4 of the 25 fixations
to be lost. Translations of 0 and �21 pixels caused an aver-
age �315460 % and ��074 � % of fixations to disappear, respectively.
Reflection behaved like a large rotation, with almost half the
fixations disappearing.

When the same image features are selected in both the
original and transformed images, they drift. For example,
when the image is translated seven pixels down and to the
right, the new position of a fixation should be seven pixels
down and to the right of the original. Instead, we find that
the new position of the fixation is an average of 11 pixels
away from this predicted position.

An interesting number not reported in Table 1 is the vari-
ance between runs on a single pair of images (test and trans-
formed test). For 1-8 of �28 image pairs, there is no variance



Gross Error %
Transform Img 1 Img 2 Img 3 Avg
Translate 1 0.0 0.0 16.0 5.3
Translate 7 2.0 24.0 12.0 12.7
Translate 32 8.0 20.0 24.0 17.3
Reflect H 48.0 36.0 64.0 49.3
Reflect V 48.0 40.0 60.0 49.3
Rotate 45 28.0 16.0 52.0 32.0
Rotate 90 48.0 24.0 60.0 41.3
Rotate 135 48.0 48.0 52.0 49.3
Rotate 180 56.0 44.0 52.0 50.6
Rotate 225 60.0 44.0 84.0 62.6
Rotate 270 48.0 32.0 64.0 46.6
Rotate 315 12.0 24.0 52.0 29.3
Averages 33.8 30.6 49.3 37.9

Median Drift
Transform Img 1 Img 2 Img 3 Avg
Translate 1 1.4 1.4 1.4 1.4
Translate 7 11.4 11.4 11.4 11.4
Translate 32 0.0 16.0 16.0 10.6
Reflect H - 14.0 - 14.0
Reflect V - 16.1 - 16.1
Rotate 45 9.8 11.7 - 10.7
Rotate 90 - 17.0 - 17.0
Rotate 135 - - - -
Rotate 180 - 17.1 - 17.1
Rotate 225 - 17.8 - 17.8
Rotate 270 - 15.0 - 15.0
Rotate 315 17.0 14.0 - 15.5
Averages 7.9 13.7 9.6 13.3

Table 1. Average Error across all modifica-
tions for three Images

between runs. For these images, if you run NVT twice on
the same image, you get the same set of fixations. For the
remaining images, however, NVT is non-deterministic, pro-
ducing different fixations on some runs than others. We do
not know why this happens; we suspect the neural network
that selects the final fixations. We do know that ten of the
eleven cases where this happens involve transformations of
the fractal test image. The last row of Table 1 shows the
gross error rates and median drifts for each test image, av-
eraged over the eleven transformations. Clearly the fractal
image is the most challenging image for NVT.

These results are both disappointing and surprising,
since the description of NVT’s algorithm in Section 2 sug-
gests that it should be invariant to rotation, translation and
reflection. Obviously, edge detectors are not perfectly in-
sensitive to rotations, but NVT uses four edge detectors at
45 degree intervals, so it should be invariant to 45 degree

rotations, which is what we tested. Instead, we believe that
the extreme sensitivity to these transformations evident here
is a result of trade-offs made in the implementation between
accuracy and processing speed. For example, NVT approx-
imates convolution with an on-center, off-surround (OCOS)
mask by subtracting pixels at one level of the pyramid from
pixels at a higher level. This is a computationally efficient
approximatation to convolution with an OCOS mask, and
is also used in other systems (e.g. [19]). Unfortunately, the
OCOS mask it best approximates is square, not circular. As
a result, the system is sensitive to rotations.

We also have suspicions about the consistency of the
neural network used to select fixations. It is the only com-
ponent we can identify that might cause it to select different
fixations on two runs on the same image, as happened with
some versions of the fractal test image. Logically, it may be
introducing part of the inconsistency between transformed
images as well. Certainly the combined system is very, very
sensitive to 2D transformations. Given that processors keep
getting faster, it may be that some of the compromises made
in the implementation of NVT for speed were not wise.

There are also reported strengths of NVT that we did
not test for. These include is robustness to Gaussian noise,
and its speed in relation to human performance. For further
details of these properties, see [9, 11, 6].

6. Reimplementing Selective Attention : SAFE

Our original intention was to use NVT as the front end
to an appearance based object recognition system (see [4]).
Unfortunately, our experience with NVT summarized above
convinced us that it would be an unreliable method for se-
lecting focus of attention regions. It also fails to select
scales, a property that would be helpful to the object recog-
nition system.

The sensitivity to 2D transformations evident in this
study appear to be more the result of design decisions made
in the implementation than the underlying neuromorphic
theory, however. We therefore decided to implement a new
selective attention system, based on the same underlying
ideas as NVT. Since the motivation of our system is to serve
as the front end for an object recognition system, we call it
SAFE (Selective Attention as a Front End). The design of
SAFE is shown in Figure 4. Like NVT, it divides process-
ing into three channels: intensity, opponent color, and edge.
As with NVT, the opponent color channel is subdivided into
red vs. green and blue vs. yellow channels. Also as with
NVT, an image pyramid is created for each channel (and
subchannel).

At every level of the pyramid, the salience of a channel
is determined by convolving it with a circularly symmet-
ric on-center off-surround mask, formed by a difference of
gaussians. The absolute values of the salience images are



Figure 4. Model of Selective Attention as a
Front End

normalized by their standard deviation (other normaliza-
tion techniques are being considered), and then smoothed
by convolution with a gaussian. In the case of the two
color subchannels, the same process is followed and then
the salience images are summed. Unlike NVT, salience im-
ages are not combined across scales within a channel. In-
stead, salience images are combined across channels within
each scale, producing a pyramid of salience maps. The first
fixation is the position (in x, y and scale) of the maximum
value in the salience pyramid. When a fixation is selected,
a watershed algorithm is used to suppress all other salience
values at the same scale that are part of the same peak. Then
the remaining maximum value is the next fixation.

We evaluated SAFE using the same tests and protocols
that we used for NVT; the results are shown in Tables 2.
Unlike NVT, SAFE is largely invariant to 2D transforma-
tions. Figure 5 shows the attention windows extracted by
NVT and SAFE for an image and its rotation. Clearly, the
fixations are more consistent between the rotated and non-
rotated image for SAFE than for NVT. There are other dif-
ferences as well, however. For SAFE, the attention win-
dows vary is size, depending on the scale of the fixation;
all attention windows selected by NVT are the same size.
This reflects the difference between a pen light and zoom-
spotlight model. Whether the attention windows selected by
SAFE are “better” than the ones selected by NVT is matter
of subjective judgement.

Gross Error %
Transform Img 1 Img 2 Img 3 Avg
Translate 1 4.0 0.0 4.0 2.6
Translate 7 0.0 0.0 4.0 1.3
Translate 32 4.0 0.0 4.0 2.6
Reflect H 0.0 0.0 0.0 0.0
Reflect V 0.0 0.0 4.0 1.3
Rotate 45 4.0 0.0 4.0 2.6
Rotate 90 0.0 0.0 4.0 1.3
Rotate 135 4.0 0.0 4.0 2.6
Rotate 180 0.0 0.0 4.0 1.3
Rotate 225 4.0 0.0 4.0 2.6
Rotate 270 0.0 0.0 0.0 0.0
Rotate 315 4.0 0.0 4.0 2.6
Averages 1.6 0.0 3.3 1.6

Median Drift
Transform Img 1 Img 2 Img 3 Avg
Translate 1 0.0 0.0 0.0 0.0
Translate 7 0.0 0.0 0.0 0.0
Translate 32 0.0 0.0 0.0 0.0
Reflect H 0.0 1.0 1.0 0.6
Reflect V 1.0 1.0 1.0 1.0
Rotate 45 1.0 1.0 1.0 1.0
Rotate 90 1.0 1.4 1.0 3.1
Rotate 135 1.0 1.0 1.0 1.0
Rotate 180 1.0 2.2 1.0 1.4
Rotate 225 1.4 1.0 4.0 2.1
Rotate 270 1.0 1.0 1.0 1.0
Rotate 315 1.0 1.0 1.0 1.0
Averages 0.7 0.8 2.0 1.2

Table 2. Average Error across all modifica-
tions for three Images

7. Scale Invariance

So far, we have evaluated NVT and SAFE for invariance
to translation, rotation and reflection, but not scale. This is
because scale invariance is the one area where the design
goals of NVT and SAFE differ. NVT embodies a pen light
model of selective attention; it selects the positions of fix-
ations, but not the scales. In fact, it explicitly integrates
information across scales. SAFE, on the other hand, im-
plements a zoom-spotlight model and selects both positions
and scales.

NVT is also parameterized by the image size. As a result,
if one reduces the resolution of an image feature without
changing the overall image size (for example, by moving
the object farther away from the camera), it may no longer
select the same image feature. NVT is not designed to be
scale invariant in this sense, even though it does multi-scale



Figure 5. Visual output of NVT (shown on the
left) compared to the output of SAFE (shown
on the right).

Gross Error %
Transform Img 1 Img 2 Img 3 Avg
Scaled 1/2 24.0 36.0 56.0 38.6
Scaled 1/4 68.0 88.0 96.0 84
Averages 46.0 62.0 76.0 61.3

Median Drift
Transform Img 1 Img 2 Img 3 Avg
Scaled 1/2 16.0 16.0 - 16.0
Scaled 1/4 - - - -
Averages 16.0 16.0 - 16.0

Table 3. NVT: Average Error across all scale
modifications for three Images

processing. SAFE, on the other hand, is not parameterized
by image size, and selects scales as well as positions. If
the resolution of an image feature is reduced, one would
hope to find the same feature in the new image, but at a
reduced resolution. We therefore have to be careful when
comparing the relative scale invariance of NVT and SAFE.
In principle, if the scale of an entire image is reduced, NVT
should select the same feature locations as in the original,
since the image size will be reduced by the same factor as
the image features. Unfortunately, Table 3 shows that NVT
is no more invariant to scale in this sense than it was to
translation, rotation or reflection. In SAFE, the size of the
masks is a user parameter. If these masks are reduced by
the same factor as the image, it should behave like NVT,
i.e. it should select the same feature locations in the both

Gross Error %
Transform Img 1 Img 2 Img 3 Avg
Scaled 1/2 4.0 4.0 16.0 8.0
Scaled 1/4 12.0 8.0 16.0 12.0
Averages 8.0 6.0 16.0 10.0

Median Drift
Transform Img 1 Img 2 Img 3 Avg
Scaled 1/2 1.0 1.0 1.4 3.1
Scaled 1/4 3.6 3.1 3.1 3.2
Averages 2.3 2.0 2.2 3.1

Table 4. SAFE: Average Error across scale
modifications for three Images

the original and reduced image. As shown in Table 4, this
is essentially what happens for SAFE.

8. Conclusion

The Neuromorphic Vision Toolkit (NVT) is a well-
known and publicly available computational model of se-
lective attention. In at least one paper it has been used as
the front end to an object recognition system [26]. Our
studies suggest, however, that the publicly available imple-
mentation is highly sensitive to 2D transformations, and is
therefore not a good candidate for the front end of an object
recognition system.

To address these problems, we have created a new se-
lective attention system called SAFE based on roughly the
same neuromorphic principles as NVT. SAFE has the ad-
vantage that it is largely invariant to 2D transformations.
Also, it selects scales as well as locations for fixations, mak-
ing it a zoom-spotlight (rather than pen light) model of se-
lective attention.

SAFE is publicly available and can be downloaded from
our web site along with basic datasets3. For speed, it is
implemented using Intel’s IPPI library, which is commer-
cially available for Intel processors running either Windows
or Linux.
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